Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37896467

RESUMO

Forest fires rank among the costliest and deadliest natural disasters globally. Identifying the smoke generated by forest fires is pivotal in facilitating the prompt suppression of developing fires. Nevertheless, succeeding techniques for detecting forest fire smoke encounter persistent issues, including a slow identification rate, suboptimal accuracy in detection, and challenges in distinguishing smoke originating from small sources. This study presents an enhanced YOLOv8 model customized to the context of unmanned aerial vehicle (UAV) images to address the challenges above and attain heightened precision in detection accuracy. Firstly, the research incorporates Wise-IoU (WIoU) v3 as a regression loss for bounding boxes, supplemented by a reasonable gradient allocation strategy that prioritizes samples of common quality. This strategic approach enhances the model's capacity for precise localization. Secondly, the conventional convolutional process within the intermediate neck layer is substituted with the Ghost Shuffle Convolution mechanism. This strategic substitution reduces model parameters and expedites the convergence rate. Thirdly, recognizing the challenge of inadequately capturing salient features of forest fire smoke within intricate wooded settings, this study introduces the BiFormer attention mechanism. This mechanism strategically directs the model's attention towards the feature intricacies of forest fire smoke, simultaneously suppressing the influence of irrelevant, non-target background information. The obtained experimental findings highlight the enhanced YOLOv8 model's effectiveness in smoke detection, proving an average precision (AP) of 79.4%, signifying a notable 3.3% enhancement over the baseline. The model's performance extends to average precision small (APS) and average precision large (APL), registering robust values of 71.3% and 92.6%, respectively.

2.
Sensors (Basel) ; 23(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37688098

RESUMO

In recent years, parking lot management systems have garnered significant research attention, particularly concerning the application of deep learning techniques. Numerous approaches have emerged for tackling parking lot occupancy challenges using deep learning models. This study contributes to the field by addressing a critical aspect of parking lot management systems: accurate vehicle occupancy determination in specific parking spaces. We propose an advanced solution by harnessing an optimized MobileNetV3 model with custom architectural enhancements, trained on the CNRPark-EXT and PKLOT datasets. The model processes individual parking space patches from real-time video feeds, providing occupancy classification for each patch, identifying occupied or available spaces. Our architectural modifications include the integration of a convolutional block attention mechanism in place of the native attention module and the adoption of blueprint separable convolutions instead of the traditional depth-wise separable convolutions. In terms of performance, our proposed model exhibits superior results when benchmarked against state-of-the-art methods. Achieving an exceptional area under the ROC curve (AUC) value of 0.99 for most experiments with the PKLot dataset, our enhanced MobileNetV3 showcases its exceptional discriminatory power in binary classification. Benchmarked against the CarNet and mAlexNet models, representative of previous state-of-the-art solutions, our proposed model showcases exceptional performance. During evaluations using the combined CNRPark-EXT and PKLot datasets, the proposed model attains an impressive average accuracy of 98.01%, while CarNet achieves 97.03%. Beyond achieving high accuracy and precision comparable to previous models, the proposed model exhibits promise for real-time applications. This work contributes to the advancement of parking lot occupancy detection by offering a robust and efficient solution with implications for urban mobility enhancement and resource optimization.

3.
Brain Sci ; 13(9)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37759920

RESUMO

The independent detection and classification of brain malignancies using magnetic resonance imaging (MRI) can present challenges and the potential for error due to the intricate nature and time-consuming process involved. The complexity of the brain tumor identification process primarily stems from the need for a comprehensive evaluation spanning multiple modules. The advancement of deep learning (DL) has facilitated the emergence of automated medical image processing and diagnostics solutions, thereby offering a potential resolution to this issue. Convolutional neural networks (CNNs) represent a prominent methodology in visual learning and image categorization. The present study introduces a novel methodology integrating image enhancement techniques, specifically, Gaussian-blur-based sharpening and Adaptive Histogram Equalization using CLAHE, with the proposed model. This approach aims to effectively classify different categories of brain tumors, including glioma, meningioma, and pituitary tumor, as well as cases without tumors. The algorithm underwent comprehensive testing using benchmarked data from the published literature, and the results were compared with pre-trained models, including VGG16, ResNet50, VGG19, InceptionV3, and MobileNetV2. The experimental findings of the proposed method demonstrated a noteworthy classification accuracy of 97.84%, a precision success rate of 97.85%, a recall rate of 97.85%, and an F1-score of 97.90%. The results presented in this study showcase the exceptional accuracy of the proposed methodology in accurately classifying the most commonly occurring brain tumor types. The technique exhibited commendable generalization properties, rendering it a valuable asset in medicine for aiding physicians in making precise and proficient brain diagnoses.

4.
Bioengineering (Basel) ; 10(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37760133

RESUMO

The lack of medical databases is currently the main barrier to the development of artificial intelligence-based algorithms in medicine. This issue can be partially resolved by developing a reliable high-quality synthetic database. In this study, an easy and reliable method for developing a synthetic medical database based only on statistical data is proposed. This method changes the primary database developed based on statistical data using a special shuffle algorithm to achieve a satisfactory result and evaluates the resulting dataset using a neural network. Using the proposed method, a database was developed to predict the risk of developing type 2 diabetes 5 years in advance. This dataset consisted of data from 172,290 patients. The prediction accuracy reached 94.45% during neural network training of the dataset.

5.
Cancers (Basel) ; 15(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37627200

RESUMO

The rapid development of abnormal brain cells that characterizes a brain tumor is a major health risk for adults since it can cause severe impairment of organ function and even death. These tumors come in a wide variety of sizes, textures, and locations. When trying to locate cancerous tumors, magnetic resonance imaging (MRI) is a crucial tool. However, detecting brain tumors manually is a difficult and time-consuming activity that might lead to inaccuracies. In order to solve this, we provide a refined You Only Look Once version 7 (YOLOv7) model for the accurate detection of meningioma, glioma, and pituitary gland tumors within an improved detection of brain tumors system. The visual representation of the MRI scans is enhanced by the use of image enhancement methods that apply different filters to the original pictures. To further improve the training of our proposed model, we apply data augmentation techniques to the openly accessible brain tumor dataset. The curated data include a wide variety of cases, such as 2548 images of gliomas, 2658 images of pituitary, 2582 images of meningioma, and 2500 images of non-tumors. We included the Convolutional Block Attention Module (CBAM) attention mechanism into YOLOv7 to further enhance its feature extraction capabilities, allowing for better emphasis on salient regions linked with brain malignancies. To further improve the model's sensitivity, we have added a Spatial Pyramid Pooling Fast+ (SPPF+) layer to the network's core infrastructure. YOLOv7 now includes decoupled heads, which allow it to efficiently glean useful insights from a wide variety of data. In addition, a Bi-directional Feature Pyramid Network (BiFPN) is used to speed up multi-scale feature fusion and to better collect features associated with tumors. The outcomes verify the efficiency of our suggested method, which achieves a higher overall accuracy in tumor detection than previous state-of-the-art models. As a result, this framework has a lot of potential as a helpful decision-making tool for experts in the field of diagnosing brain tumors.

6.
Sensors (Basel) ; 23(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37631614

RESUMO

Fire incidents occurring onboard ships cause significant consequences that result in substantial effects. Fires on ships can have extensive and severe wide-ranging impacts on matters such as the safety of the crew, cargo, the environment, finances, reputation, etc. Therefore, timely detection of fires is essential for quick responses and powerful mitigation. The study in this research paper presents a fire detection technique based on YOLOv7 (You Only Look Once version 7), incorporating improved deep learning algorithms. The YOLOv7 architecture, with an improved E-ELAN (extended efficient layer aggregation network) as its backbone, serves as the basis of our fire detection system. Its enhanced feature fusion technique makes it superior to all its predecessors. To train the model, we collected 4622 images of various ship scenarios and performed data augmentation techniques such as rotation, horizontal and vertical flips, and scaling. Our model, through rigorous evaluation, showcases enhanced capabilities of fire recognition to improve maritime safety. The proposed strategy successfully achieves an accuracy of 93% in detecting fires to minimize catastrophic incidents. Objects having visual similarities to fire may lead to false prediction and detection by the model, but this can be controlled by expanding the dataset. However, our model can be utilized as a real-time fire detector in challenging environments and for small-object detection. Advancements in deep learning models hold the potential to enhance safety measures, and our proposed model in this paper exhibits this potential. Experimental results proved that the proposed method can be used successfully for the protection of ships and in monitoring fires in ship port areas. Finally, we compared the performance of our method with those of recently reported fire-detection approaches employing widely used performance matrices to test the fire classification results achieved.

7.
Sensors (Basel) ; 23(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37420642

RESUMO

Methods for detecting emotions that employ many modalities at the same time have been found to be more accurate and resilient than those that rely on a single sense. This is due to the fact that sentiments may be conveyed in a wide range of modalities, each of which offers a different and complementary window into the thoughts and emotions of the speaker. In this way, a more complete picture of a person's emotional state may emerge through the fusion and analysis of data from several modalities. The research suggests a new attention-based approach to multimodal emotion recognition. This technique integrates facial and speech features that have been extracted by independent encoders in order to pick the aspects that are the most informative. It increases the system's accuracy by processing speech and facial features of various sizes and focuses on the most useful bits of input. A more comprehensive representation of facial expressions is extracted by the use of both low- and high-level facial features. These modalities are combined using a fusion network to create a multimodal feature vector which is then fed to a classification layer for emotion recognition. The developed system is evaluated on two datasets, IEMOCAP and CMU-MOSEI, and shows superior performance compared to existing models, achieving a weighted accuracy WA of 74.6% and an F1 score of 66.1% on the IEMOCAP dataset and a WA of 80.7% and F1 score of 73.7% on the CMU-MOSEI dataset.


Assuntos
Emoções , Fala , Humanos , Reconhecimento Psicológico , Expressão Facial
8.
Sensors (Basel) ; 23(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37514754

RESUMO

Drowsy driving can significantly affect driving performance and overall road safety. Statistically, the main causes are decreased alertness and attention of the drivers. The combination of deep learning and computer-vision algorithm applications has been proven to be one of the most effective approaches for the detection of drowsiness. Robust and accurate drowsiness detection systems can be developed by leveraging deep learning to learn complex coordinate patterns using visual data. Deep learning algorithms have emerged as powerful techniques for drowsiness detection because of their ability to learn automatically from given inputs and feature extractions from raw data. Eye-blinking-based drowsiness detection was applied in this study, which utilized the analysis of eye-blink patterns. In this study, we used custom data for model training and experimental results were obtained for different candidates. The blinking of the eye and mouth region coordinates were obtained by applying landmarks. The rate of eye-blinking and changes in the shape of the mouth were analyzed using computer-vision techniques by measuring eye landmarks with real-time fluctuation representations. An experimental analysis was performed in real time and the results proved the existence of a correlation between yawning and closed eyes, classified as drowsy. The overall performance of the drowsiness detection model was 95.8% accuracy for drowsy-eye detection, 97% for open-eye detection, 0.84% for yawning detection, 0.98% for right-sided falling, and 100% for left-sided falling. Furthermore, the proposed method allowed a real-time eye rate analysis, where the threshold served as a separator of the eye into two classes, the "Open" and "Closed" states.


Assuntos
Condução de Veículo , Aprendizado Profundo , Piscadela , Fases do Sono , Vigília , Computadores
9.
Sensors (Basel) ; 23(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37050503

RESUMO

In recent years, considerable work has been conducted on the development of synthetic medical images, but there are no satisfactory methods for evaluating their medical suitability. Existing methods mainly evaluate the quality of noise in the images, and the similarity of the images to the real images used to generate them. For this purpose, they use feature maps of images extracted in different ways or distribution of images set. Then, the proximity of synthetic images to the real set is evaluated using different distance metrics. However, it is not possible to determine whether only one synthetic image was generated repeatedly, or whether the synthetic set exactly repeats the training set. In addition, most evolution metrics take a lot of time to calculate. Taking these issues into account, we have proposed a method that can quantitatively and qualitatively evaluate synthetic images. This method is a combination of two methods, namely, FMD and CNN-based evaluation methods. The estimation methods were compared with the FID method, and it was found that the FMD method has a great advantage in terms of speed, while the CNN method has the ability to estimate more accurately. To evaluate the reliability of the methods, a dataset of different real images was checked.


Assuntos
Algoritmos , Inteligência Artificial , Reprodutibilidade dos Testes , Benchmarking , Processamento de Imagem Assistida por Computador
10.
Sensors (Basel) ; 23(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36991872

RESUMO

Authorities and policymakers in Korea have recently prioritized improving fire prevention and emergency response. Governments seek to enhance community safety for residents by constructing automated fire detection and identification systems. This study examined the efficacy of YOLOv6, a system for object identification running on an NVIDIA GPU platform, to identify fire-related items. Using metrics such as object identification speed, accuracy research, and time-sensitive real-world applications, we analyzed the influence of YOLOv6 on fire detection and identification efforts in Korea. We conducted trials using a fire dataset comprising 4000 photos collected through Google, YouTube, and other resources to evaluate the viability of YOLOv6 in fire recognition and detection tasks. According to the findings, YOLOv6's object identification performance was 0.98, with a typical recall of 0.96 and a precision of 0.83. The system achieved an MAE of 0.302%. These findings suggest that YOLOv6 is an effective technique for detecting and identifying fire-related items in photos in Korea. Multi-class object recognition using random forests, k-nearest neighbors, support vector, logistic regression, naive Bayes, and XGBoost was performed on the SFSC data to evaluate the system's capacity to identify fire-related objects. The results demonstrate that for fire-related objects, XGBoost achieved the highest object identification accuracy, with values of 0.717 and 0.767. This was followed by random forest, with values of 0.468 and 0.510. Finally, we tested YOLOv6 in a simulated fire evacuation scenario to gauge its practicality in emergencies. The results show that YOLOv6 can accurately identify fire-related items in real time within a response time of 0.66 s. Therefore, YOLOv6 is a viable option for fire detection and recognition in Korea. The XGBoost classifier provides the highest accuracy when attempting to identify objects, achieving remarkable results. Furthermore, the system accurately identifies fire-related objects while they are being detected in real-time. This makes YOLOv6 an effective tool to use in fire detection and identification initiatives.

11.
Sensors (Basel) ; 23(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36772551

RESUMO

With an increase in both global warming and the human population, forest fires have become a major global concern. This can lead to climatic shifts and the greenhouse effect, among other adverse outcomes. Surprisingly, human activities have caused a disproportionate number of forest fires. Fast detection with high accuracy is the key to controlling this unexpected event. To address this, we proposed an improved forest fire detection method to classify fires based on a new version of the Detectron2 platform (a ground-up rewrite of the Detectron library) using deep learning approaches. Furthermore, a custom dataset was created and labeled for the training model, and it achieved higher precision than the other models. This robust result was achieved by improving the Detectron2 model in various experimental scenarios with a custom dataset and 5200 images. The proposed model can detect small fires over long distances during the day and night. The advantage of using the Detectron2 algorithm is its long-distance detection of the object of interest. The experimental results proved that the proposed forest fire detection method successfully detected fires with an improved precision of 99.3%.

12.
Sensors (Basel) ; 23(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617097

RESUMO

Most facial recognition and face analysis systems start with facial detection. Early techniques, such as Haar cascades and histograms of directed gradients, mainly rely on features that had been manually developed from particular images. However, these techniques are unable to correctly synthesize images taken in untamed situations. However, deep learning's quick development in computer vision has also sped up the development of a number of deep learning-based face detection frameworks, many of which have significantly improved accuracy in recent years. When detecting faces in face detection software, the difficulty of detecting small, scale, position, occlusion, blurring, and partially occluded faces in uncontrolled conditions is one of the problems of face identification that has been explored for many years but has not yet been entirely resolved. In this paper, we propose Retina net baseline, a single-stage face detector, to handle the challenging face detection problem. We made network improvements that boosted detection speed and accuracy. In Experiments, we used two popular datasets, such as WIDER FACE and FDDB. Specifically, on the WIDER FACE benchmark, our proposed method achieves AP of 41.0 at speed of 11.8 FPS with a single-scale inference strategy and AP of 44.2 with multi-scale inference strategy, which are results among one-stage detectors. Then, we trained our model during the implementation using the PyTorch framework, which provided an accuracy of 95.6% for the faces, which are successfully detected. Visible experimental results show that our proposed model outperforms seamless detection and recognition results achieved using performance evaluation matrices.


Assuntos
Aprendizado Profundo , Reconhecimento Facial , Face , Software
13.
Sensors (Basel) ; 22(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36560151

RESUMO

Currently, there is a growing population around the world, and this is particularly true in developing countries, where food security is becoming a major problem. Therefore, agricultural land monitoring, land use classification and analysis, and achieving high yields through efficient land use are important research topics in precision agriculture. Deep learning-based algorithms for the classification of satellite images provide more reliable and accurate results than traditional classification algorithms. In this study, we propose a transfer learning based residual UNet architecture (TL-ResUNet) model, which is a semantic segmentation deep neural network model of land cover classification and segmentation using satellite images. The proposed model combines the strengths of residual network, transfer learning, and UNet architecture. We tested the model on public datasets such as DeepGlobe, and the results showed that our proposed model outperforms the classic models initiated with random weights and pre-trained ImageNet coefficients. The TL-ResUNet model outperforms other models on several metrics commonly used as accuracy and performance measures for semantic segmentation tasks. Particularly, we obtained an IoU score of 0.81 on the validation subset of the DeepGlobe dataset for the TL-ResUNet model.


Assuntos
Agricultura , Imagens de Satélites , Algoritmos , Benchmarking , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador
14.
Sensors (Basel) ; 22(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502081

RESUMO

Wildfire is one of the most significant dangers and the most serious natural catastrophe, endangering forest resources, animal life, and the human economy. Recent years have witnessed a rise in wildfire incidents. The two main factors are persistent human interference with the natural environment and global warming. Early detection of fire ignition from initial smoke can help firefighters react to such blazes before they become difficult to handle. Previous deep-learning approaches for wildfire smoke detection have been hampered by small or untrustworthy datasets, making it challenging to extrapolate the performances to real-world scenarios. In this study, we propose an early wildfire smoke detection system using unmanned aerial vehicle (UAV) images based on an improved YOLOv5. First, we curated a 6000-wildfire image dataset using existing UAV images. Second, we optimized the anchor box clustering using the K-mean++ technique to reduce classification errors. Then, we improved the network's backbone using a spatial pyramid pooling fast-plus layer to concentrate small-sized wildfire smoke regions. Third, a bidirectional feature pyramid network was applied to obtain a more accessible and faster multi-scale feature fusion. Finally, network pruning and transfer learning approaches were implemented to refine the network architecture and detection speed, and correctly identify small-scale wildfire smoke areas. The experimental results proved that the proposed method achieved an average precision of 73.6% and outperformed other one- and two-stage object detectors on a custom image dataset.


Assuntos
Bombeiros , Incêndios , Incêndios Florestais , Animais , Humanos , Fumaça , Florestas
15.
Sensors (Basel) ; 22(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36433303

RESUMO

Owing to the availability of a wide range of emotion recognition applications in our lives, such as for mental status calculation, the demand for high-performance emotion recognition approaches remains uncertain. Nevertheless, the wearing of facial masks has been indispensable during the COVID-19 pandemic. In this study, we propose a graph-based emotion recognition method that adopts landmarks on the upper part of the face. Based on the proposed approach, several pre-processing steps were applied. After pre-processing, facial expression features need to be extracted from facial key points. The main steps of emotion recognition on masked faces include face detection by using Haar-Cascade, landmark implementation through a media-pipe face mesh model, and model training on seven emotional classes. The FER-2013 dataset was used for model training. An emotion detection model was developed for non-masked faces. Thereafter, landmarks were applied to the upper part of the face. After the detection of faces and landmark locations were extracted, we captured coordinates of emotional class landmarks and exported to a comma-separated values (csv) file. After that, model weights were transferred to the emotional classes. Finally, a landmark-based emotion recognition model for the upper facial parts was tested both on images and in real time using a web camera application. The results showed that the proposed model achieved an overall accuracy of 91.2% for seven emotional classes in the case of an image application. Image based emotion detection of the proposed model accuracy showed relatively higher results than the real-time emotion detection.


Assuntos
COVID-19 , Face , Humanos , Pandemias , Expressão Facial , Emoções
16.
Sensors (Basel) ; 22(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36365819

RESUMO

Speech recognition refers to the capability of software or hardware to receive a speech signal, identify the speaker's features in the speech signal, and recognize the speaker thereafter. In general, the speech recognition process involves three main steps: acoustic processing, feature extraction, and classification/recognition. The purpose of feature extraction is to illustrate a speech signal using a predetermined number of signal components. This is because all information in the acoustic signal is excessively cumbersome to handle, and some information is irrelevant in the identification task. This study proposes a machine learning-based approach that performs feature parameter extraction from speech signals to improve the performance of speech recognition applications in real-time smart city environments. Moreover, the principle of mapping a block of main memory to the cache is used efficiently to reduce computing time. The block size of cache memory is a parameter that strongly affects the cache performance. In particular, the implementation of such processes in real-time systems requires a high computation speed. Processing speed plays an important role in speech recognition in real-time systems. It requires the use of modern technologies and fast algorithms that increase the acceleration in extracting the feature parameters from speech signals. Problems with overclocking during the digital processing of speech signals have yet to be completely resolved. The experimental results demonstrate that the proposed method successfully extracts the signal features and achieves seamless classification performance compared to other conventional speech recognition algorithms.


Assuntos
Aprendizado de Máquina , Fala , Algoritmos , Acústica , Reconhecimento Psicológico
17.
Sensors (Basel) ; 22(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36365921

RESUMO

E-commerce systems experience poor quality of performance when the number of records in the customer database increases due to the gradual growth of customers and products. Applying implicit hidden features into the recommender system (RS) plays an important role in enhancing its performance due to the original dataset's sparseness. In particular, we can comprehend the relationship between products and customers by analyzing the hierarchically expressed hidden implicit features of them. Furthermore, the effectiveness of rating prediction and system customization increases when the customer-added tag information is combined with hierarchically structured hidden implicit features. For these reasons, we concentrate on early grouping of comparable customers using the clustering technique as a first step, and then, we further enhance the efficacy of recommendations by obtaining implicit hidden features and combining them via customer's tag information, which regularizes the deep-factorization procedure. The idea behind the proposed method was to cluster customers early via a customer rating matrix and deeply factorize a basic WNMF (weighted nonnegative matrix factorization) model to generate customers preference's hierarchically structured hidden implicit features and product characteristics in each cluster, which reveals a deep relationship between them and regularizes the prediction procedure via an auxiliary parameter (tag information). The testimonies and empirical findings supported the viability of the proposed approach. Especially, MAE of the rating prediction was 0.8011 with 60% training dataset size, while the error rate was equal to 0.7965 with 80% training dataset size. Moreover, MAE rates were 0.8781 and 0.9046 in new 50 and 100 customer cold-start scenarios, respectively. The proposed model outperformed other baseline models that independently employed the major properties of customers, products, or tags in the prediction process.


Assuntos
Algoritmos , Comércio , Análise por Conglomerados , Bases de Dados Factuais
18.
Sensors (Basel) ; 22(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36236403

RESUMO

Early fire detection and notification techniques provide fire prevention and safety information to blind and visually impaired (BVI) people within a short period of time in emergency situations when fires occur in indoor environments. Given its direct impact on human safety and the environment, fire detection is a difficult but crucial problem. To prevent injuries and property damage, advanced technology requires appropriate methods for detecting fires as quickly as possible. In this study, to reduce the loss of human lives and property damage, we introduce the development of the vision-based early flame recognition and notification approach using artificial intelligence for assisting BVI people. The proposed fire alarm control system for indoor buildings can provide accurate information on fire scenes. In our proposed method, all the processes performed manually were automated, and the performance efficiency and quality of fire classification were improved. To perform real-time monitoring and enhance the detection accuracy of indoor fire disasters, the proposed system uses the YOLOv5m model, which is an updated version of the traditional YOLOv5. The experimental results show that the proposed system successfully detected and notified the occurrence of catastrophic fires with high speed and accuracy at any time of day or night, regardless of the shape or size of the fire. Finally, we compared the competitiveness level of our method with that of other conventional fire-detection methods to confirm the seamless classification results achieved using performance evaluation matrices.


Assuntos
Inteligência Artificial , Sistemas Computacionais , Humanos , Tecnologia
19.
Sensors (Basel) ; 22(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080958

RESUMO

Among researchers using traditional and new machine learning and deep learning techniques, 2D medical image segmentation models are popular. Additionally, 3D volumetric data recently became more accessible, as a result of the high number of studies conducted in recent years regarding the creation of 3D volumes. Using these 3D data, researchers have begun conducting research on creating 3D segmentation models, such as brain tumor segmentation and classification. Since a higher number of crucial features can be extracted using 3D data than 2D data, 3D brain tumor detection models have increased in popularity among researchers. Until now, various significant research works have focused on the 3D version of the U-Net and other popular models, such as 3D U-Net and V-Net, while doing superior research works. In this study, we used 3D brain image data and created a new architecture based on a 3D U-Net model that uses multiple skip connections with cost-efficient pretrained 3D MobileNetV2 blocks and attention modules. These pretrained MobileNetV2 blocks assist our architecture by providing smaller parameters to maintain operable model size in terms of our computational capability and help the model to converge faster. We added additional skip connections between the encoder and decoder blocks to ease the exchange of extracted features between the two blocks, which resulted in the maximum use of the features. We also used attention modules to filter out irrelevant features coming through the skip connections and, thus, preserved more computational power while achieving improved accuracy.


Assuntos
Neoplasias Encefálicas , Processamento de Imagem Assistida por Computador , Algoritmos , Atenção , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
20.
Sensors (Basel) ; 22(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35590996

RESUMO

The growing aging population suffers from high levels of vision and cognitive impairment, often resulting in a loss of independence. Such individuals must perform crucial everyday tasks such as cooking and heating with systems and devices designed for visually unimpaired individuals, which do not take into account the needs of persons with visual and cognitive impairment. Thus, the visually impaired persons using them run risks related to smoke and fire. In this paper, we propose a vision-based fire detection and notification system using smart glasses and deep learning models for blind and visually impaired (BVI) people. The system enables early detection of fires in indoor environments. To perform real-time fire detection and notification, the proposed system uses image brightness and a new convolutional neural network employing an improved YOLOv4 model with a convolutional block attention module. The h-swish activation function is used to reduce the running time and increase the robustness of YOLOv4. We adapt our previously developed smart glasses system to capture images and inform BVI people about fires and other surrounding objects through auditory messages. We create a large fire image dataset with indoor fire scenes to accurately detect fires. Furthermore, we develop an object mapping approach to provide BVI people with complete information about surrounding objects and to differentiate between hazardous and nonhazardous fires. The proposed system shows an improvement over other well-known approaches in all fire detection metrics such as precision, recall, and average precision.


Assuntos
Incêndios , Pessoas com Deficiência Visual , Idoso , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA