Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicon ; 243: 107720, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38614244

RESUMO

AIM: This study proposed to assess the synergistic effects of Forskolin and Metformin (alone and in combination) on glucose, hematological, liver serum, and oxidative stress parameters in diabetic, healthy, and hepatocellular carcinoma (HCC) induced rats. MATERIALS AND METHODS: Eighty male Wistar rats were divided into 10 experimental groups (8 rats for each group), including 1) healthy group, 2) diabetic group, 3) HCC group, 4) diabet + Metformin (300 mg/kg), 5) diabet + Forskolin (100 mg/kg), 6) diabet + Metformin (300 mg/kg) & Forskolin (100 mg/kg), 7) HCC + Metformin (300 mg/kg), 8) HCC + Forskolin (100 mg/kg), 9) HCC + Metformin (300 mg/kg) & Forskolin (100 mg/kg), and 10) healthy group + Metformin (300 mg/kg) & Forskolin (100 mg/kg). The rats were administrated Forskolin/Metformin daily for 8 weeks. Glucose, hematological, and liver serum parameters were measured and compared among the groups. The levels of malondialdehyde (MDA), and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), as well as 8-hydroxydeoxyguanosine (8 OHdG) levels, were also measured. RESULTS: The average blood glucose reduction in diabetic rats with the Forskolin, Metformin, and Forskolin + Metformin treatments was 43.5%, 47.1%, and 53.9%, respectively. These reduction values for HCC rats after the treatments were 21.0%, 16.2%, and 23.7%, respectively. For all the diabetic and HCC rats treated with Forskolin/Metformin, the MDA, SOD, and GPx levels showed significant improvement compared with the diabetic and HCC groups (P < 0.05). Although the rats treated with Forskolin + Metformin experienced a higher reduction in oxidative stress of blood and urine samples compared to the Forskolin group, the differences between this group and rats treated with Metformin were not significant for all parameters. CONCLUSION: Metformin and Forskolin reduced oxidative stress in diabetic and HCC-induced rats. The results indicated that the combination of agents (Metformin & Forskolin) had greater therapeutic effects than Forskolin alone in reducing glucose levels in diabetic rats. However, the ameliorative effects of combining Metformin and Forskolin on blood and urine oxidative stress were not statistically higher than those of Metformin alone.


Assuntos
Carcinoma Hepatocelular , Colforsina , Diabetes Mellitus Experimental , Hipoglicemiantes , Neoplasias Hepáticas , Metformina , Estresse Oxidativo , Ratos Wistar , Animais , Metformina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Colforsina/farmacologia , Masculino , Ratos , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Sinergismo Farmacológico , Glicemia , Malondialdeído/sangue
2.
Chem Biodivers ; 21(5): e202400366, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38498805

RESUMO

The escalating global health challenge posed by infections prompts the exploration of innovative solutions utilizing MXene-based nanostructures. Societally, the need for effective antimicrobial strategies is crucial for public health, while scientifically, MXenes present promising properties for therapeutic applications, necessitating scalable production and comprehensive characterization techniques. Here we review the versatile physicochemical properties of MXene materials for combatting microbial threats and their various synthesis methods, including etching and top-down or bottom-up techniques. Crucial characterization techniques such as XRD, Raman spectroscopy, SEM/TEM, FTIR, XPS, and BET analysis provide insightful structural and functional attributes. The review highlights MXenes' diverse antimicrobial mechanisms, spanning membrane disruption and oxidative stress induction, demonstrating efficacy against bacterial, viral, and fungal infections. Despite translational hurdles, MXene-based nanostructures offer broad-spectrum antimicrobial potential, with applications in drug delivery and diagnostics, presenting a promising path for advancing infection control in global healthcare.


Assuntos
Anti-Infecciosos , Nanoestruturas , Nanoestruturas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Humanos , Testes de Sensibilidade Microbiana , Bactérias/efeitos dos fármacos , Controle de Infecções , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química
3.
Int Wound J ; 21(1): e14358, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37654247

RESUMO

This systematic review and meta-analysis aimed to evaluate the relationship between body mass index (BMI) and mortality of burn patients. A comprehensive, systematic search was conducted in different international electronic databases, such as Scopus, PubMed, Web of Science and Persian electronic databases such as Iranmedex, and Scientific Information Database (SID) using keywords extracted from Medical Subject Headings such as "Body mass index", "Burns" and "Mortality" from the earliest to the April 1, 2023. The quality of the studies included in this systematic review was evaluated using the appraisal tool for cross-sectional studies (AXIS tool). Finally, six articles were included in this systematic review and meta-analysis. A total of 16 154 burn patients participated in six studies. Their mean age was 46.32 (SD = 1.99). Of the participants, 71.7% were males. The mean length of hospitalization was 18.80 (SD = 8.08) days, and the average TBSA in burn patients was 38.32 (SD = 2.79) %. Also, the average BMI in burn patients was 27.10 (SD = 1.75). Results found mortality in patients with abnormal BMI (overweight to morbidity BMI) was 0.19 more than normal BMI (ES: 1.19, 95%CI: 0.76-1.87, Z = 0.75, I2 : 71.8%, p = 0.45). Results of linear dose-response showed each 5 kg/m2 increase in BMI was associated with a 5% increase in mortality that was marginally significant (ES: 1.05, 95%CI: 1.00-1.11, Z = 1.99, I2 : 22.2%, p = 0.047). There was a non-linear relationship between levels of BMI and mortality (Prob > χ2 = 0.02). There was an increase in mortality from percentile 10 to 50, although it was not significant (Correlational coefficient: 0.01, p = 0.85). Also, there was an increase in mortality rate from percentile 50 to 90 that was statistically significant (correlational coefficient: 0.06, p = 0.047). Finally, the results of the study indicated BMI can increase the chance of mortality by 0.19, although it was not significant. As a result, more studies are needed to better judge the relationship between BMI and mortality in burn victims.


Assuntos
Queimaduras , Sobrepeso , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Índice de Massa Corporal , Estudos Transversais , Queimaduras/terapia
4.
Front Chem ; 11: 1236580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638100

RESUMO

Today, with the indiscriminate use of antibiotics, we face the resistance of some bacterial strains against some antibiotics. Therefore, it is essential to report and synthesize new compounds with antimicrobial properties. A novel copper/dipicolinic acid-metal-organic framework cross-linked oxidized pectin and chitosan (Cu/DPA-MOF/OP/CS) hydrogel polymer was synthesized under environmental conditions with the controllable process, which uses biodegradable polymer compounds such as pectin and chitosan in its structure. The efficient physicochemical features of the synthesized Cu/DPA-MOF/OP/CS hydrogel using SEM, FT-IR, TGA, BET, XRD, and EDS/mapping were identified and confirmed. The newly synthesized Cu/DPA-MOF/OP/CS hydrogel showed activity against Gram-positive and Gram-negative bacterial strains and fungal species, and significant antibacterial and antifungal properties were observed. In antibacterial activity, the MIC against Gram-positive species was in the range of 16-128 mg/mL, the MIC against Gram-negative species was in the range of 64-256 mg/mL, and the MIC against fungal species was in the range of 128-512 mg/mL. In antimicrobial evaluations, in addition to the MIC test, the MBC test, the MFC test, and the IZD test were performed, and the results were reported. The results were compared with commercial antibiotics in the market. Development of novel nanostructures based on hydrogel polymers with distinctive functionality can affect the performance of these nanostructures in different areas.

5.
Int Immunopharmacol ; 110: 109074, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35978522

RESUMO

Oxysterols are cholesterol metabolites generated in the liver and other peripheral tissues as a mechanism of removing excess cholesterol. Oxysterols have a wide range of biological functions, including the regulation of sphingolipid metabolism, platelet aggregation, and apoptosis. However, it has been found that metabolites derived from cholesterol play essential functions in cancer development and immunological suppression. In this regard, research indicates that 27-hydroxycholesterol (27-HC) might act as an estrogen, promoting the growth of estrogen receptor (ER) positive breast cancer cells. The capacity of cholesterol to dynamically modulate signaling molecules inside the membrane and particular metabolites serving as signaling molecules are two possible contributory processes. 27-HC is a significant metabolite produced mainly through the CYP27A1 (Cytochrome P450 27A1) enzyme. 27-HC maintains cholesterol balance biologically by promoting cholesterol efflux via the liver X receptor (LXR) and suppressing de novo cholesterol production through the Insulin-induced Genes (INSIGs). It has been demonstrated that 27-HC is able to function as a selective ER regulator. Moreover, enhanced 27-HC production is in favor of the growth of end-stage malignancies in the brain, thyroid organs, and colon, as shown in breast cancer, probably due to pro-survival and pro-inflammatory signaling induced by unbalanced levels of oxysterols. However, the actual role of 27-HC in cancer promotion and progression remains debatable, and many studies are warranted to be performed to unravel the precise function of these molecules. This review article will summarize the latest evidence on the deleterious or beneficial functions of 27-HC in various types of cancer, such as breast cancer, prostate cancer, colon cancer, gastric cancer, ovarian cancer, endometrial cancer, lung cancer, melanoma, glioblastoma, thyroid cancer, adrenocortical cancer, and hepatocellular carcinoma.


Assuntos
Neoplasias da Mama , Oxisteróis , Neoplasias da Mama/metabolismo , Colesterol/metabolismo , Humanos , Hidroxicolesteróis , Masculino , Oxisteróis/metabolismo
6.
Crit Rev Anal Chem ; : 1-20, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35749278

RESUMO

Fabricating novel biosensing constructs with high sensitivity and selectivity is highly demanded in food contaminants detection. In this prospect, various nanostructured materials were envisaged to build (bio)sensors with superior sensitivity and selectivity. The desirable biocompatibility, brilliant mechanical strength, ease of surface functionalization, as well as tunable optical and electronic features, portray 2D MXenes as versatile scaffolds for biosensing. In this review, we overviewed the state-of-the-art MXenes-based optical biosensing devices to detect mycotoxins, pesticide residues, antibiotic residues, and food borne-pathogens from foodstuff and environmental matrices. Firstly, the synthesis methods and surface functionalization/modification of MXenes are discussed. Secondly, according to the target analytes, we categorized and presented a detailed account of the newest research progress of MXenes-based optical probes for food contaminants monitoring. The efficiency of all the surveyed probes was assessed on the basis of important factors like response time, detection limit (DL), and sensing range. Lastly, the necessity and requirements for future advances in this emerging MXenes material are also given, followed by challenges and opportunities. We hope that this study will bridge the gap between nanotechnology and food science, offering insights for engineers or scientists in both areas to accelerate the progress of MXenes-based materials for food safety detection.

7.
IET Nanobiotechnol ; 16(3): 85-91, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35293680

RESUMO

Mesoporous magnetic nanoparticles of haematite were synthesised using plant extracts according to bioethics principles. The structural, physical and chemical properties of mesoporous Fe2 O3 nanoparticles synthesised with the green chemistry approach were evaluated by XRD, SEM, EDAX, BET, VSM and HRTEM analysis. Then, their toxicity against normal HUVECs and MCF7 cancer cells was evaluated by MTT assay for 48 h. These biogenic mesoporous magnetic nanoparticles have over 71% of doxorubicin loading efficiency, resulting in a 50% reduction of cancer cells at a 0.5 µg.ml-1 concentration. Therefore, it is suggested that mesoporous magnetic nanoparticles be used as a multifunctional agent in medicine (therapeutic-diagnostic). The produced mesoporous magnetic nanoparticles with its inherent structural properties such as polygonal structure (increasing surface area to particle volume) and porosity with large pore volume became a suitable substrate for loading the anti-cancer drug doxorubicin.


Assuntos
Nanopartículas , Dióxido de Silício , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Nanopartículas/química , Porosidade , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA