Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 248: 125798, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442508

RESUMO

The idea of combining bioextracted polymers for wound healing applications has emerged in hopes of developing highly flexible and mechanically stable hydrogel films with controlled drug delivery, biocompatibility, and high collagen deposition. In the present research, polysaccharide films composed of Alginate and Quince Seed Gum (QSG) were fabricated by ionic crosslinking, and their potential for curcumin delivery and wound healing were examined. In this regard, microstructure, mechanical properties, thermal stability, physiochemical properties, and biocompatibility of films with three different QSG amounts (25 %, 50 %, and 75 %) were studied. Because of the optimum properties of 25 % QSG films like better transparency (Opacity = 6.1 %), higher flexibility (Elongation = 28.9 %), less water solubility (Water solubility = 66.6 %), proper absorbance (Swelling degree = >600 %), and suitable biocompatibility (Cell viability = >85 %), they were used for drug delivery examination. Curcumin administration through films with and without stearic acid modification was investigated. Stearic Acid (SA) modified samples demonstrated superior compatibility between hydrophobic drug and hydrophilic film. Stearic acid-modified film could prolong the curcumin release up to 48 h and showed increased collagen synthesis and TGF-ß expression, making it an excellent candidate for transdermal drug delivery and wound healing applications.


Assuntos
Alginatos , Curcumina , Alginatos/química , Curcumina/farmacologia , Curcumina/química , Sistemas de Liberação de Medicamentos , Polissacarídeos , Água/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-36988393

RESUMO

Successful regeneration of critical-size defects remains one of the significant challenges in regenerative engineering. These large-scale bone defects are difficult to regenerate and are often reconstructed with matrices that do not provide adequate oxygen levels to stem cells involved in the regeneration process. Hypoxia-induced necrosis predominantly occurs in the center of large matrices since the host tissue's local vasculature fails to provide sufficient nutrients and oxygen. Indeed, utilizing oxygen-generating materials can overcome the central hypoxic region, induce tissue in-growth, and increase the quality of life for patients with extensive tissue damage. This article reviews recent advances in oxygen-generating biomaterials for translational bone regenerative engineering. We discussed different oxygen-releasing and delivery methods, fabrication methods for oxygen-releasing matrices, biology, oxygen's role in bone regeneration, and emerging new oxygen delivery methods that could potentially be used for bone regenerative engineering.

3.
Mater Sci Eng C Mater Biol Appl ; 120: 111756, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545897

RESUMO

Carbon-based quantum dots (CDs) are mainly divided into two sub-groups; carbon quantum dots (CQDs) and graphene quantum dots (GQDs), which exhibit outstanding photoluminescence (PL) properties, low toxicity, superior biocompatibility and facile functionalization. Regarding these features, they have been promising candidates for biomedical science and engineering applications. In this work, we reviewed the efforts made to modify these zero-dimensional nano-materials to obtain the best properties for bio-imaging, drug and gene delivery, cancer therapy, and bio-sensor applications. Five main surface modification techniques with outstanding results are investigated, including doping, surface functionalization, polymer capping, nano-composite and core-shell structures, and the drawbacks and challenges in each of these methods are discussed.


Assuntos
Grafite , Pontos Quânticos , Carbono , Técnicas de Transferência de Genes , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA