Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol Lett ; 380: 23-30, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011773

RESUMO

ABCG2 is an ATP-binding cassette efflux transporter that is expressed in absorptive and excretory organs such as liver, intestine, kidney, brain and testis where it plays a crucial physiological and toxicological role in protecting cells against xenobiotics, affecting pharmacokinetics of its substrates. In addition, the induction of ABCG2 expression in mammary gland during lactation is related to active secretion of many toxicants into milk. In this study, the in vitro interactions between ABCG2 and three pesticides flupyradifurone, bupirimate and its metabolite ethirimol were investigated to check whether these compounds are substrates and/or inhibitors of this transporter. Using in vitro transepithelial assays with cells transduced with murine, ovine and human ABCG2, we showed that ethirimol and flupyradifurone were transported efficiently by murine Abcg2 and ovine ABCG2 but not by human ABCG2. Bupirimate was not found to be an in vitro substrate of ABCG2 transporter. Accumulation assays using mitoxantrone in transduced MDCK-II cells suggest that none of the tested pesticides were efficient ABCG2 inhibitors, at least in our experimental conditions. Our studies disclose that ethirimol and flupyradifurone are in vitro substrates of murine and ovine ABCG2, opening the possibility of a potential relevance of ABCG2 in the toxicokinetics of these pesticides.


Assuntos
Praguicidas , Masculino , Feminino , Animais , Ovinos , Humanos , Camundongos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Praguicidas/toxicidade , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Carneiro Doméstico/metabolismo , Proteínas de Neoplasias/metabolismo
2.
Chemosphere ; 330: 138714, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37080471

RESUMO

In this study we aimed to understand the underlying mechanism of Dichlorvos-induced toxicity in cardiac cells. For this end, cells were treated by 170 µM of Dichlorvos (DDVP) (corresponding to the IC50) and molecular events were monitored by flow cytometry and western blotting. We have first demonstrated that cell exposure to DDVP for 24 h induced cell death by necroptosis. In fact, cell treatment with DDVP upregulated RIP1 expression and we have shown that chemical inhibition of RIP1 kinase activity by necrostatin-1 (Nec-1) greatly prevented from the induced cell death. Besides, we have demonstrated that, while there was no observed cell death following short exposure to DDVP (6 h), autophagy was enhanced, as proven by the increase in the level of both Beclin-1 and LC3-II and the accumulation of the CytoID® autophagy detection probe. Besides, when autophagy was inhibited by chloroquine (CQ) the percentage of necroptosis was significantly increased, suggesting that autophagy acts to protect cardiac cells against the toxicity induced by this pesticide. Concurrently, we have shown that the inhibition of the deacetylase sirtuin 1 (SIRT1) by EX527 or its knockdown by siRNA significantly increased DDVP-induced necroptosis, whereas when SIRT1 was activated by resveratrol (RSV) a significant decrease in DDVP-induced cell death was observed. In addition, we revealed that when the autophagy was inhibited by CQ, we can't reveal the protective effect of RSV anymore. Altogether, these results suggest that activation of SIRT1 protects cardiac cells from the toxicity of DDVP through an autophagy-dependent pathway.


Assuntos
Diclorvós , Sirtuína 1 , Diclorvós/toxicidade , Sirtuína 1/metabolismo , Morte Celular , Resveratrol , Autofagia
3.
Toxicol In Vitro ; 89: 105587, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36933581

RESUMO

Fenpyroximate (FEN) is an acaricide that inhibits mitochondrial electron transport at the NADH-coenzyme Q oxidoreductase (complex I). The present study was designed to investigate the molecular mechanisms underling FEN toxicity on cultured human colon carcinoma cells (HCT116). Our data showed that FEN induced HCT116 cell mortality in a concentration dependent manner. FEN arrested cell cycle in G0/G1 phase and increased DNA damage as assessed by comet assay. Induction of apoptosis was confirmed in HCT116 cells exposed to FEN by AO-EB staining and Annexin V-FITC/PI double staining assay. Moreover, FEN induced a loss in mitochondrial membrane potential (MMP), increased p53 and Bax mRNA expression and decreased bcl2 mRNA level. An increase in caspase 9 and caspase 3 activities was also detected. All toghether, these data suggest that FEN induce apoptosis in HCT116 cells via mitochondrial pathway. To check the implication of oxidative stress in FEN-induced cell toxicity, we examined the oxidative stress statue in HCT116 cells exposed to FEN and we tested the effect of a powerful antioxidant, N-acetylcystein (NAC), on FEN-caused toxicity. It was observed that FEN enhanced ROS generation and MDA levels and disturbed SOD and CAT activities. Besides, cell treatment with NAC significantly protected cells from mortality, DNA damage, loss of MMP, and caspase 3 activity induced by FEN. To the best of our knowledge, this is the first study showing that FEN induced mitochondrial apoptosis via ROS generation and oxidative stress.


Assuntos
Acaricidas , Neoplasias do Colo , Humanos , Células HCT116 , Acaricidas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Estresse Oxidativo , Apoptose , RNA Mensageiro/metabolismo , Potencial da Membrana Mitocondrial
4.
Foods ; 12(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36900491

RESUMO

Staphylococcus aureus is one of the high-threat pathogens equipped with a repertoire of virulence factors making it responsible for many infections in humans, including foodborne diseases. The present study aims to characterize antibiotic resistance and virulence factors in foodborne S. aureus isolates, and to investigate their cytotoxic effects in human intestinal cells (HCT-116). Our results revealed methicillin resistance phenotypes (MRSA) along with the detection of mecA gene (20%) among tested foodborne S. aureus strains. Furthermore, 40% of tested isolates showed a strong ability for adhesion and biofilm formation. A high rate of exoenzymes production by tested bacteria was also registered. Additionally, treatment with S. aureus extracts leads to a significant decrease in HCT-116 cell viability, accompanied by a reduction in the mitochondrial membrane potential (MMP), as a result of reactive oxygen species (ROS) generation. Thereby, S. aureus food poisoning remains daunting and needs particular concern to prevent foodborne illness.

5.
J Biochem Mol Toxicol ; 37(6): e23341, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36988222

RESUMO

Pesticides have been used to kill pests such as insects, fungi, rodents, and unwanted plants. As these compounds are potentially toxic to the target organisms, they could also be harmful to human health and the environment. Several chronic adverse effects have been identified even after months or years of exposure. The adverse effects of pesticides on the agricultural ecosystem have been a matter of concern in recent decades. In this review, we present an overview of the studies, including our previous studies, monitoring currently used pesticides in the Tunisian agricultural soils that belong to the class of insect growth regulators (IGRs). Triflumuron (TFM) is a benzoyl phenyl urea insecticide belonging to the class of IGRs. TFM is widely used around the world to increase crop yield by protecting them from damage caused by insects. TFM works by inhibiting the synthesis of chitin, an essential part of the insect cuticle, making it susceptible to pathogens and deformities. Consequently, insects become more susceptible to pathogens and malformations. However, studies revealing its toxicity and its mode of action in mammalian systems remain very limited. The aim of this review is to better inform the community about the impact of TFM on crops, the environment, and human beings by summarizing its toxic effects.


Assuntos
Inseticidas , Praguicidas , Animais , Humanos , Ecossistema , Insetos , Inseticidas/toxicidade , Mamíferos
6.
Food Chem Toxicol ; 170: 113464, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36228901

RESUMO

Pesticides products are widely used to increase food productivity and to decrease food-borne diseases. Fludioxonil is a worldwide used phenylpyrrol fungicide. This pesticide can induce serious effects on human health especially on nervous system. We assessed the role of oxidative stress in the toxicity of Fludioxonil and examined its apoptotic mechanism of action on rat neural cells (F98). We have shown that the increasing concentration of Fludioxonil reduces the percentage of living F98 cells viability and increases the levels of reactive oxygen species and malondialdheydes. The reduction of cells proliferation was demonstrated with an accumulation in G2/M phase. The immunocytochemical analysis has shown that Fludioxonil induced the disruption of the cytoskeleton. DNA damage was also provoked in a concentration dependent manner as illustrated by the comet assay. The depolarization of the mitochondria and the positive Annexin V FITC-PI confirmed the apoptosis induced by this fungicide. Interestingly, the F98 cells viability and ROS levels were restored with N-acetylcysteine pre-treatment. These results highlight the involvement of oxidative stress in the toxicity induced by this fungicide, and that free radicals generation plays a key role in the induction of apoptosis probably induced via the mitochondrial pathway.


Assuntos
Fungicidas Industriais , Glioma , Praguicidas , Humanos , Ratos , Animais , Fungicidas Industriais/metabolismo , Praguicidas/metabolismo , Apoptose , Dano ao DNA , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Glioma/metabolismo , Citoesqueleto
7.
Environ Toxicol Pharmacol ; 94: 103919, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35753672

RESUMO

Tebuconazole (TEB) is a common triazole fungicide that has been widely applied in the treatment of fungal diseases. It is reported that TEB could exert harmful effects on mammals' health. However, the molecular mechanism involved in TEB toxicity remain undefined. Our study aimed to investigate the mechanisms of TEB-induced toxicity in intestinal cells. We found that TEB stimulates apoptosis through the mitochondrial pathway. Additionally, TEB triggers endoplasmic reticulum (ER) stress as demonstrated by the activation of the three arms of unfolded protein response (UPR). The incubation with the chemical chaperone 4-phenylbutyrate (4-PBA) alleviated ER stress and reduced TEB-induced apoptosis, suggesting that ER stress plays an important role in mediating TEB-induced toxicity. Furthermore, inhibition of ROS by N-acetylcysteine (NAC) inhibited TEB-induced ER stress and apoptosis. Taken together, these findings suggest that TEB exerts its toxic effects in HCT116 cells by inducing apoptosis through ROS-mediated ER stress and mitochondrial apoptotic pathway.


Assuntos
Estresse do Retículo Endoplasmático , Fungicidas Industriais , Animais , Apoptose , Fungicidas Industriais/toxicidade , Mamíferos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Triazóis/toxicidade
8.
J Biochem Mol Toxicol ; 36(8): e23092, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35521929

RESUMO

The protective effects of thymol and carvacrol, two phenolic monoterpenes with a wide spectrum of pharmacological effects, against the oxidative stress produced by the di (2-ethylhexyl) phthalate (DEHP) in human embryonic kidney cells 293 cells (HEK-293 cells) were investigated in this study. The cytotoxicity was monitored by cell viability, while oxidative stress generation was assessed by reactive oxygen species (ROS) quantification, antioxidant enzyme activities measurement, glutathione concentration, and malondialdehyde (MDA) quantification. The genotoxicity was evaluated by the measurement of DNA fragmentation through the Comet assay. Our results demonstrated that the pretreatment of HEK-293 cells with thymol or carvacrol, 2 h before DEHP exposure, significantly increased the cell viability, decreased the ROS overproduction, modulated catalase (CAT), and superoxide dismutase (SOD) activities, restored the reduced glutathione content, and reduced the MDA level. The DNA fragmentation was also decreased by thymol and carvacrol pretreatment. These findings suggest that thymol and carvacrol could protect HEK-293 cells from DEHP-induced oxidative stress.


Assuntos
Cimenos , Dietilexilftalato , Timol , Antioxidantes/farmacologia , Cimenos/farmacologia , Dietilexilftalato/toxicidade , Glutationa , Células HEK293 , Humanos , Rim/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio , Timol/farmacologia
9.
Pestic Biochem Physiol ; 182: 105034, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35249655

RESUMO

Epoxiconazole is a worldwide fungicide used to control fungal diseases. Although to its hazardous effects in non-target species, little information is available in the literature to show the cardiotoxic effects of EPX in male rats. Thus, our investigation aimed to assess the outcomes of EPX exposure on some biochemical parameters, the generation of oxidative stress, DNA fragmentation and histopathological alterations in the heart tissue. EPX was administered orally at doses of 8, 24, 40 and 56 mg/kg body weight, representing, respectively NOEL (No observed effect level), NOEL× 3, NOEL× 5 and NOEL× 7 for 28 consecutive days in male Wistar rats. Our results show that EPX induced a significant decrease of cardiac acetylcholinesterase, an increase of biochemical markers, such as creatinine phosphokinase (CPK) and a perturbation of the lipid profile. Furthermore, EPX caused diverse histological modifications in the myocardium, including congestion of cardiac blood vessels, cytoplasmic vacuolization, leucocytic infiltration and hemorrhage. Indeed, we have shown that EPX induces increase of lipid peroxidation, protein oxidation levels and DNA damage. On the other hand, we have found an increase of the antioxidant enzymes activity such as catalase (CAT) and superoxide dismutase (SOD) activities. The glutathione peroxidase and glutathione S tranferase initially enhanced at the doses of 8, 24, and 40 mg/kg b.w. and then decreased at the dose of 56 mg/kg b.w. In conclusion, our work has shown that EPX causes cardiotoxic effects by altering redox status and damaging heart tissue.


Assuntos
Compostos de Epóxi/toxicidade , Traumatismos Cardíacos , Triazóis/toxicidade , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Traumatismos Cardíacos/induzido quimicamente , Peroxidação de Lipídeos , Estresse Oxidativo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
10.
Neurotoxicology ; 89: 184-190, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35167857

RESUMO

Epoxiconazole is among the most widely applied pesticides worldwide. The increased use of these products could cause toxic effects on human health which are mainly associated with its residues in food or occupational exposure in agriculture. The brain is the principal target of lipophilic compounds exposure, while the data of brain injury induced by Epoxiconazole remains unclear. The purpose of our investigation was to assess the cytotoxic and genotoxic effects of the epoxiconazole in rat Pheochromocytoma (PC 12). We found that epoxiconazole could reduce the viability and proliferation of PC12 cells, induce the DNA damage, nuclear condensation, cytoskeleton network disruption and enhance the apoptotic cell death. Intracellular biochemical assay proved that EPX induces the loss of mitochondrial membrane potential (ΔΨm) and activates caspase-3. Indeed, EPX instigated ROS generation in neuronal cells, which is accompanied by an increase of lipid peroxidation as confirmed by the high levels of MDA. Interestingly, Pre-treatment of PC12 cells with the ROS scavenger N-acetylcysteine mitigated EPX-provoked DNA fragmentation and enhancement of apoptosis. Our results demonstrate that the genotoxic and cytotoxic outcomes of EPX are mediated through a ROS-dependent pathway in PC12 cells.


Assuntos
Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Neoplasias das Glândulas Suprarrenais/induzido quimicamente , Animais , Apoptose , Sobrevivência Celular , Dano ao DNA , Compostos de Epóxi , Estresse Oxidativo , Células PC12 , Feocromocitoma/induzido quimicamente , Ratos , Espécies Reativas de Oxigênio/metabolismo , Triazóis
11.
Biol Trace Elem Res ; 200(11): 4782-4794, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35066750

RESUMO

Hexavalent chromium (CrVI) compounds are potent toxicants commonly used in numerous industries. Thus, potential toxic effects and health hazards are of high relevance. Selenium (Se) and zinc (Zn) are known for their antioxidant and chemoprotective properties. However, little is known about their protective effects against CrVI-induced renal damage during pregnancy. In this context, the present study aimed to investigate the protective efficacy of these two essential elements against potassium dichromate-induced nephrotoxicity in pregnant Wistar Albino rats. Female rats were divided into control and four treated groups of six each receiving subcutaneously on the 3rd day of pregnancy, K2Cr2O7 (10 mg/kg, s.c. single dose) alone, or in association with Se (0.3 mg/kg, s.c. single dose), ZnCl2 (20 mg/kg, s.c. single dose) or both of them simultaneously. The nephrotoxic effects were monitored by the evaluation of plasma renal parameters, oxidative stress biomarkers, DNA damage, and renal Cr content. The obtained results showed that K2Cr2O7 disturbed renal biochemical markers, induced oxidative stress and DNA fragmentation in kidney tissues, and altered renal histoarchitecture. The co-administration of Se and/or ZnCl2 has exhibited pronounced chelative, antioxidant, and genoprotective effects against K2Cr2O7-induced renal damage and attenuated partially the histopathological alterations. These results suggest that Se and Zn can be used as efficient nephroprotective agents against K2Cr2O7-induced toxicity in pregnant Wistar Albino rats.


Assuntos
Dicromato de Potássio , Selênio , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Biomarcadores/metabolismo , Feminino , Rim/metabolismo , Estresse Oxidativo , Dicromato de Potássio/toxicidade , Gravidez , Ratos , Ratos Wistar , Selênio/metabolismo , Selênio/farmacologia , Zinco/metabolismo , Zinco/farmacologia
12.
Chemosphere ; 288(Pt 3): 132640, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34695486

RESUMO

Epoxiconazole (EPX), a widely used fungicide for domestic, medical, and industrial applications, could cause neurodegenerative diseases. However, the underling mechanism of neurotoxicity is not well understood. This study aimed to investigate the possible toxic outcomes of Epoxiconzole, a triazole fungicide, on the brain of adult rats in vivo, and in vitro on neural stem cells derived from the subventricular zone of newborn Wistar rats. Our results revealed that oral exposure to EPX at these concentrations (8, 24, 40, 56 mg/kg bw representing respectively NOEL (no observed effect level), NOEL × 3, NOEL × 5, and NOEL × 7) for 28 days caused a considerable generation of oxidative stress in adult rat brain tissue. Furthermore, a significant augmentation in lipid peroxidation and protein oxidation has been found. Moreover, it induced an elevation of DNA fragmentation as assessed by the Comet assay. Indeed, EPX administration impaired activities of antioxidant enzymes and inhibited AChE activity. Concomitantly, this pesticide produced histological alterations in the brain of adult rats. Regarding the embryonic neural stem cells, we demonstrated that the treatment by EPX reduced the viability of cells with an IC50 of 10 µM. It also provoked the reduction of cell proliferation, and EPX triggered arrest in G1/S phase. The neurosphere formation and self-renewal capacity was reduced and associated with decreased differentiation. Moreover, EPX induced cytoskeleton disruption as evidenced by immunocytochemical analysis. Our findings also showed that EPX induced apoptosis as evidenced by a loss of mitochondrial transmembrane potential (ΔΨm) and an activation of caspase-3. In addition, EPX promoted ROS production in neural stem cells. Interestingly, the pretreatment of neural stem cells with the N-acetylcysteine (ROS scavenger) attenuated EPX-induced cell death, disruption of neural stem cells properties, ROS generation and apoptosis. Thus, the use of this hazardous material should be restricted and carefully regulated.


Assuntos
Células-Tronco Neurais , Triazóis , Animais , Apoptose , Encéfalo , Compostos de Epóxi , Estresse Oxidativo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Triazóis/toxicidade
13.
Antioxidants (Basel) ; 10(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805396

RESUMO

Moringa oleifera (MO) is a medicinal plant that has been shown to possess antioxidant, anticarcinogenic and antibiotic activities. In a rat model, MO extract (MOe) has been shown to have a protective effect against brain damage and memory decline. As an extending study, here, we have examined the protective effect of MOe against oxidative stress and apoptosis caused in human neuroblastome (SH-SY5Y) cells by di-(2-ethylhexyl) phthalate (DEHP), a plasticizer known to induce neurotoxicity. Our data show that MOe prevents oxidative damage by lowering reactive oxygen species (ROS) formation, restoring mitochondrial respiratory chain complex activities, and, in addition, by modulating the expression of vitagenes, i.e., antioxidant proteins Nrf2 and HO-1. Moreover, MOe prevented neuronal damage by partly inhibiting endoplasmic reticulum (ER) stress response, as indicated by decreased expression of CCAAT-enhancer-binding protein homologous protein (CHOP) and Glucose-regulated protein 78 (GRP78) proteins. MOe also protected SH-SY5Y cells from DEHP-induced apoptosis, preserving mitochondrial membrane permeability and caspase-3 activation. Our findings provide insight into understanding of molecular mechanisms involved in neuroprotective effects by MOe against DEHP damage.

14.
Pestic Biochem Physiol ; 174: 104797, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33838701

RESUMO

Tebuconazole (TEB) is a common triazole fungicide that has been widely used for the control of plant pathogenic fungi, suggesting that mammal exposure occurs regularly. Several studies demonstrated that TEB exposure has been linked to a variety of toxic effects, including neurotoxicity, immunotoxicity, reprotoxicity and carcinogenicity. However, there is a few available data regarding the molecular mechanism involved in TEB-induced toxicity. The current study was undertaken to investigate the toxic effects of TEB in HCT116 cells. Our results showed that TEB caused cytotoxicity by inhibiting cell viability as assessed by the MTT assay. Furthermore, we have demonstrated that TEB induced a significant increase in the reactive oxygen species (ROS) production leading to the induction of lipid peroxidation and DNA fragmentation and increased superoxide dismutase (SOD) and catalase (CAT) activities. Moreover, TEB exposure induced mitochondrial membrane potential loss and caspase-9/-3 activation. Treatment with general caspases inhibitor (Z-VAD-fmk) significantly prevented the TEB-induced cell death, indicating that TEB induced caspases-dependent cell death. These findings suggest the involvement of oxidative stress and apoptosis in TEB-induced toxicity in HCT116.


Assuntos
Dano ao DNA , Triazóis , Animais , Apoptose , Células HCT116 , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Triazóis/toxicidade
15.
Environ Sci Pollut Res Int ; 28(18): 22563-22576, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33423197

RESUMO

Hexavalent chromium (CrVI) is an environmental pollutant and an endocrine-disrupting metal. Se and Zn are essential trace elements, known to play a crucial role in thyroid homeostasis. However, there is a lack of data reporting thyrotoxicity during gestation. In this study, we investigated the protective effects of selenium and zinc against potassium dichromate-induced thyrotoxicity in pregnant Wistar rats. Thirty pregnant Wistar rats were divided into control and four treated groups receiving subcutaneously (s.c) on the 3rd day of pregnancy, K2Cr2O7 (10 mg/kg, s.c) alone, or in association with Se (0.3 mg/kg, s.c), ZnCl2 (20 mg/kg, s.c), or both of them simultaneously. The hormonal profile, oxidative stress biomarkers, DNA damage, and histological modifications were evaluated. Our main findings showed that K2Cr2O7 promoted hypothyroidism, oxidative stress, genotoxicity, and histological alterations in the thyroid gland. The co-treatment with Se or ZnCl2 has mitigated K2Cr2O7-induced thyrotoxicity in pregnant Wistar rats by exhibiting antioxidant and genoprotective effects. However, the combined co-treatment of both of them was less thyroprotective, and therefore, further investigations on the synergetic interaction of Se and Zn against CrVI toxicity using different doses and exposure routes are required.


Assuntos
Dicromato de Potássio , Selênio , Animais , Dano ao DNA , Feminino , Estresse Oxidativo , Dicromato de Potássio/toxicidade , Gravidez , Ratos , Ratos Wistar , Selênio/farmacologia , Glândula Tireoide , Zinco
16.
Free Radic Biol Med ; 164: 154-163, 2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33429020

RESUMO

Epoxiconazole is one of the most commonly used fungicides in the world. The exposition of humans to pesticides is mainly attributed to its residue in food or occupational exposure in agricultural production. Because of its lipophilic character, Epoxiconazole can accumulate in the brain Heusinkveld et al. (2013) [1]. Consequently, it is urgent to explore efficient strategies to prevent or treat Epoxiconazole-related brain damages. The use of natural molecules commonly found in our diet represents a promising avenue. Flavonoids belong to a major sub-group compounds possessing powerful antioxidant activities based on their different structural and sterical properties [2]. We choose to evaluate Myricetin, a flavonoid with a wide spectrum of pharmacological effects, for its possible protective functions against Epoxiconazole-induced toxicities. The cytotoxicity induced by this fungicide was evaluated by the cell viability, cell cycle arrest, ROS generation, antioxidant enzyme activities, and Malondialdehyde production, as previously described in Hamdi et al., 2019 [3]. The apoptosis was assessed through the evaluation of the mitochondrial transmembrane potential (ΔΨm), caspases activation, DNA fragmentation, cytoskeleton disruption, nuclear condensation, appearance of sub-G0/G1 peak (fragmentation of the nucleus) and externalization of Phosphatidylserine. This study indicates that pre-treatment of F98 cells with Myricetin during 2 h before Epoxiconazole exposure significantly increased the survival of cells, restored DNA synthesis of the S phase, abrogated the ROS generation, regulated the activities of Catalase (CAT) and Superoxide Dismutase (SOD), and reduced the MDA level. The loss of mitochondrial membrane potential, DNA fragmentation, cytoskeleton disruption, chromatin condensation, Phosphatidylserine externalization, and Caspases activation were also reduced by Myricetin. Together, these findings indicate that Myricetin is a powerful natural product able to protect cells from Epoxiconazole-induced cytotoxicity and apoptosis.


Assuntos
Fármacos Neuroprotetores , Apoptose , Compostos de Epóxi , Flavonoides/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/farmacologia , Triazóis
17.
Pestic Biochem Physiol ; 170: 104671, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32980069

RESUMO

TEB belongs to the family of triazole fungicides and it is used to protect agricultural crop plants from fungal pathogens. The information regarding its cardiotoxic effects through different pathways particularly by perturbing the oxidative balance and causing damage to the myocardium is still limited. In the present study, oxidative and histopathologic damages caused by TEB in the cardiac tissue of male adult rats, were evaluated. Rats were exposed orally to TEB at 0.9, 9, 27 and 45 mg/kg b.w. for 28 days. Results showed that following TEB treatment malondialdehyde (MDA), protein carbonyl (PC), advanced oxidation protein product (AOPP), antioxidant enzyme activities (GPx and GR) and GSSG levels increased, while GSH levels and thus the GSH/GSSG ratio decreased. Superoxide dismutase (SOD) and catalase (CAT) initially increased at the doses of 0.9, 9 and 27 mg/kg b.w. and then decreased at the dose of 45 mg/kg b.w. Moreover, western blot analysis showed that TEB increased SOD1, CAT and HSP70 protein levels after 24 h. Furthermore, TEB induced various histological changes in the myocardium, including leucocytic infiltration, hemorrhage congestion of cardiac blood vessels and cytoplasmic vacuolization. Therefore, our investigation revealed, that TEB exhibits cardiotoxic effects by changing oxidative balance and damaging the cardiac tissue.


Assuntos
Glutationa , Estresse Oxidativo , Animais , Antioxidantes , Catalase , Glutationa Peroxidase , Masculino , Malondialdeído , Ratos , Ratos Wistar , Superóxido Dismutase , Triazóis/toxicidade
18.
Chem Biol Interact ; 330: 109114, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32735800

RESUMO

Tebuconazole (TEB) is a broad-spectrum conazole fungicide that has been used in agriculture in the control of foliar and soil-borne diseases of many crops. The present study has investigated the adverse effects of subchronic exposure to TEB on the kidney of male rats. Animals were divided into four equal groups and treated with TEB at increasing doses 0.9, 9 and 27 mg/kg body weight for 28 consecutive days. The results showed that TEB induced oxidative stress in the kidney demonstrated by an increase in malondialdehyde (MDA), protein carbonyl (PC), advanced oxidation protein product (AOPP) levels and DNA damage, as compared to the controls. Furthermore, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities were increased in the renal tissue of treated rats. Moreover, significant decrease in reduced glutathione (GSH) content in TEB-treated rats was observed, while oxidized glutathione (GSSG) levels were increased, thus a marked fall in GSH/GSSG ratio was registered in the kidney. Glutathione reductase (GR) activity showed a significant increase after TEB exposure. Moreover, TEB down-regulated the expression of Bcl2 and up-regulated the expression of Bax and caspase 3, which triggered apoptosis via the Bax/Bcl2 and caspase pathway. Also, TEB administration resulted in altered biochemical indicators of renal function and varying lesions in the overall histo-architecture of renal tissues. Taken together, our findings brought into light the renal toxicity induced by TEB, which was found to be significant at low doses.


Assuntos
Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Rim/patologia , Estresse Oxidativo/efeitos dos fármacos , Triazóis/toxicidade , Animais , Relação Dose-Resposta a Droga , Fungicidas Industriais/toxicidade , Regulação da Expressão Gênica , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Glutationa Redutase/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Oxirredução , Ratos , Ratos Wistar
19.
Ecotoxicol Environ Saf ; 204: 111040, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32798748

RESUMO

Tebuconazole (TEB) is a common triazole fungicide that is widely used throughout the world in agriculture applications. We previously reported that TEB induces cardiac toxicity in rats. The aim of this study was to investigate the underlying mechanism of the toxicity induced by TEB in cardiac cells. TEB induced dose-dependent cell death in H9c2 cardiomyoblasts and in adult rat ventricular myocytes (ARVM). The comet assay and western blot analysis showed a concentration-dependent increase in DNA damage and in p53 and p21 protein levels 24 h after TEB treatment. Our findings also showed that TEB triggered the mitochondrial pathway of apoptosis as evidenced by a loss of mitochondrial transmembrane potential (ΔΨm), an increase in Bax/Bcl-2 ratio, an activation of caspase-9 and caspase-3, a cleavage of poly (ADP-ribose) polymerase (PARP) and an increase in the proportion of cells in the sub-G1 phase. In addition, TEB promoted ROS production in cardiac cells and consequently increased the amounts of MDA, the end product of lipid peroxidation. Treatment of cardiomyocytes with the ROS scavenger N-acetylcysteine reduced TEB-induced DNA damage and activation of the mitochondrial pathway of apoptosis. These results indicate that the genotoxic and cytotoxic effects of TEB are mediated through a ROS-dependent pathway in cardiac cells.


Assuntos
Apoptose , Cardiotoxicidade/metabolismo , Dano ao DNA , Fungicidas Industriais/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Triazóis/toxicidade , Animais , Cardiotoxicidade/etiologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Ratos , Ratos Wistar
20.
Cell Stress Chaperones ; 25(6): 919-928, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32500380

RESUMO

Environmental toxicants such as phthalate have been involved in multiple health disorders including renal diseases. Oxidative damage is implicated in many alterations caused by phthalate especially the di(2-ethylhexyl) phthalate (DEHP), which is the most useful phthalate. However, information regarding its mechanism of renal damage is lacking. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates gene expression implicated in free radical scavenging and cytoprotection including the antioxidant glutathione (GSH) pathway. The aim of this study was to assess whether DEHP affects the Nrf2 pathway and the GSH concentration. Mice were divided into four groups: a control group and three groups treated with DEHP at different concentrations (5, 50, and 200 mg/kg body weight) for 30 days. Our results showed that DEHP altered the normal levels of serum biochemical parameters creatinine (CREA), urea, and lactate dehydrogenase (LDH). This phthalate caused oxidative damage through the induction of lipid peroxidation and protein oxidation as marked by increase of protein carbonyl (PC) and loss of protein-bound sulfhydryls (PSH). Simultaneously, DEHP treatment decreased the protein level of Nrf-2, HO-1, and GCLC (responsible of GSH synthesis) and decreased the GSH level. Inhibition of the Nrf2 pathway is related to the activation of the mitochondrial pathway of apoptosis. This apoptotic process is evidenced by an upregulation of p53 and Bax protein levels in addition to a downregulation of Bcl-2. Collectively, our data demonstrated that depletion of Nrf2 and GSH was associated with the elevation of oxidative stress and the activation of intrinsic apoptosis in mouse kidney treated with DEHP.


Assuntos
Dietilexilftalato/toxicidade , Glutationa/metabolismo , Homeostase , Rim/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores/sangue , Glutamato-Cisteína Ligase/metabolismo , Heme Oxigenase-1/metabolismo , Homeostase/efeitos dos fármacos , Rim/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos BALB C , Oxirredução , Carbonilação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA