Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
NPJ Digit Med ; 5(1): 120, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986059

RESUMO

We introduce a multi-institutional data harvesting (MIDH) method for longitudinal observation of medical imaging utilization and reporting. By tracking both large-scale utilization and clinical imaging results data, the MIDH approach is targeted at measuring surrogates for important disease-related observational quantities over time. To quantitatively investigate its clinical applicability, we performed a retrospective multi-institutional study encompassing 13 healthcare systems throughout the United States before and after the 2020 COVID-19 pandemic. Using repurposed software infrastructure of a commercial AI-based image analysis service, we harvested data on medical imaging service requests and radiology reports for 40,037 computed tomography pulmonary angiograms (CTPA) to evaluate for pulmonary embolism (PE). Specifically, we compared two 70-day observational periods, namely (i) a pre-pandemic control period from 11/25/2019 through 2/2/2020, and (ii) a period during the early COVID-19 pandemic from 3/8/2020 through 5/16/2020. Natural language processing (NLP) on final radiology reports served as the ground truth for identifying positive PE cases, where we found an NLP accuracy of 98% for classifying radiology reports as positive or negative for PE based on a manual review of 2,400 radiology reports. Fewer CTPA exams were performed during the early COVID-19 pandemic than during the pre-pandemic period (9806 vs. 12,106). However, the PE positivity rate was significantly higher (11.6 vs. 9.9%, p < 10-4) with an excess of 92 PE cases during the early COVID-19 outbreak, i.e., ~1.3 daily PE cases more than statistically expected. Our results suggest that MIDH can contribute value as an exploratory tool, aiming at a better understanding of pandemic-related effects on healthcare.

2.
Nat Med ; 27(10): 1735-1743, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34526699

RESUMO

Federated learning (FL) is a method used for training artificial intelligence models with data from multiple sources while maintaining data anonymity, thus removing many barriers to data sharing. Here we used data from 20 institutes across the globe to train a FL model, called EXAM (electronic medical record (EMR) chest X-ray AI model), that predicts the future oxygen requirements of symptomatic patients with COVID-19 using inputs of vital signs, laboratory data and chest X-rays. EXAM achieved an average area under the curve (AUC) >0.92 for predicting outcomes at 24 and 72 h from the time of initial presentation to the emergency room, and it provided 16% improvement in average AUC measured across all participating sites and an average increase in generalizability of 38% when compared with models trained at a single site using that site's data. For prediction of mechanical ventilation treatment or death at 24 h at the largest independent test site, EXAM achieved a sensitivity of 0.950 and specificity of 0.882. In this study, FL facilitated rapid data science collaboration without data exchange and generated a model that generalized across heterogeneous, unharmonized datasets for prediction of clinical outcomes in patients with COVID-19, setting the stage for the broader use of FL in healthcare.


Assuntos
COVID-19/fisiopatologia , Aprendizado de Máquina , Avaliação de Resultados em Cuidados de Saúde , COVID-19/terapia , COVID-19/virologia , Registros Eletrônicos de Saúde , Humanos , Prognóstico , SARS-CoV-2/isolamento & purificação
3.
J Neurovirol ; 26(2): 188-200, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31912459

RESUMO

It is estimated that more than 50% of the individuals affected with Human Immunodeficiency Virus (HIV) present deficits in multiple cognitive domains, collectively known as HIV-associated neurocognitive disorder (HAND). Early stages of brain injury may be clinically silent but potentially measurable via neuroimaging. A total of 40 subjects (20 HIV positive and 20 age-matched controls) volunteered for the study. All subjects underwent a standard battery of neuropsychological tests used for the clinical diagnosis of HAND. Fourteen HIV+ and five healthy subjects showed signs of neurological impairment. Connectivity was computed using mutual connectivity analysis (MCA) with generalized radial basis function neural network, a framework for quantifying non-linear connectivity as well as conventional correlation from 160 regional time-series that were extracted based on the Dosenbach (DOS) atlas. We subsequently applied graph theoretic as well as network analysis approaches for characterizing the connectivity matrices obtained and localizing between-group differences. We focused on trying to detect cognitive impairment using the subset of 29 (14 subjects with HAND and 15 cognitively normal controls) subjects. For the global analysis, significant differences (p < 0.05) were seen in the variance in degree, modularity and Smallworldness. Regional analysis revealed changes occurring mainly in portions of the lateral occipital cortex and the cingulate cortex. Furthermore, using Network Based Statistics (NBS), we uncovered an affected sub-network of 19 nodes comprising predominantly of regions of the default mode network. Similar analysis using the conventional correlation method revealed no significant results at a global scale, while regional analysis shows some differences spread across resting state networks. These results suggest that there is a subtle reorganization occurring in the topology of brain networks in HAND, which can be captured using improved connectivity analysis.


Assuntos
Complexo AIDS Demência/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/virologia , Neuroimagem/métodos , Complexo AIDS Demência/fisiopatologia , Adulto , Encéfalo/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade
4.
Magn Reson Imaging ; 62: 121-128, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31189074

RESUMO

Functional MRI (fMRI) quantifies brain activity non-invasively by measuring the blood oxygen level dependent (BOLD) response to neuronal activity. It was recently demonstrated, on realistic fMRI simulations, that nonlinear connectivity approaches, such as Mutual Connectivity Analysis with Local Models (MCA-LM), are better suited for extracting connectivity measures than conventional techniques of cross-correlating time-series pairs. In this work, we investigate the application of MCA-LM in extracting meaningful connectivity measures aiding in distinguishing healthy controls from individuals presenting with symptoms of HIV Associated Neurocognitive Disorder (HAND), which occurs as a result of HIV infection of the central nervous system. The pairwise connectivity measures provide a high-dimensional representation of connectivity profiles for subjects and are used as features for classification. We adopt feature selection (FS) techniques reducing the number of redundant and noisy features, while also controlling the complexity of the classifiers. We investigate three FS techniques: 1) Kendall's τ, 2) Information Gain Attribute selection 3) ReliefF and two classifiers:1) AdaBoost and 2) Random Forests. Our results demonstrate that MCA-LM consistently outperforms correlation in terms of Area under the Receiver Operating Characteristic Curve and accuracy. Improved performance with MCA-LM suggests that such a nonlinear approach is better at capturing meaningful connectivity relationships between brain regions. This demonstrates potential for developing novel neuroimaging-derived biomarkers for HAND. Furthermore, FS helps identify connections between anatomical regions that are affected by HAND. In this work, we show that the regions of the basal ganglia and frontal cortex, which are known to be affected by HAND according to current literature, are identified as most discriminative.


Assuntos
Complexo AIDS Demência/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Infecções por HIV/complicações , Imageamento por Ressonância Magnética , Adulto , Algoritmos , Área Sob a Curva , Gânglios da Base , Estudos de Casos e Controles , Comorbidade , Feminino , Lobo Frontal/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Neuroimagem , Dinâmica não Linear , Reconhecimento Automatizado de Padrão , Curva ROC , Reprodutibilidade dos Testes
5.
Comput Biol Med ; 106: 24-30, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30665138

RESUMO

HIV-associated neurocognitive disorders (HAND) represent an important source of neurologic complications in individuals with HIV. The dynamic, often subclinical, course of HAND has rendered diagnosis, which currently depends on neuropsychometric (NP) evaluation, a challenge for clinicians. Here, we present evidence that functional brain connectivity, derived by large-scale Granger causality (lsGC) analysis of resting-state functional MRI (rs-fMRI) time-series, represents a potential biomarker to address this critical diagnostic need. Brain graph properties were used as features in machine learning tasks to 1) classify individuals as HIV+ or HIV- and 2) to predict overall cognitive performance, as assessed by NP scores, in a 22-subject (13 HIV-, 9 HIV+) cohort. Over nearly all seven brain parcellation templates considered, support vector machine (SVM) classifiers based on lsGC-derived brain graph features significantly outperformed those based on conventional Pearson correlation (PC)-derived features (p<0.05, Bonferroni-corrected). In a second task for which the objective was to predict the overall NP score of each subject, the lsGC-based SVM regressors consistently outperformed the PC-based regressors (p<0.05, Bonferroni-corrected) on nearly all templates. With the widely used Automated Anatomical Labeling (AAL90) template, it was determined that the brain regions that figured most strongly in the SVM classifiers included those of the default mode network (posterior cingulate cortex, angular gyrus) and basal ganglia (caudate nucleus), dysfunction in both of which have been observed in previous structural and functional analyses of HAND.


Assuntos
Encéfalo/diagnóstico por imagem , Diagnóstico por Computador , Infecções por HIV/diagnóstico por imagem , Imageamento por Ressonância Magnética , Transtornos Neurocognitivos/diagnóstico por imagem , Máquina de Vetores de Suporte , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
Artigo em Inglês | MEDLINE | ID: mdl-30505063

RESUMO

Resting-state functional MRI (rs-fMRI), coupled with advanced multivariate time-series analysis methods such as Granger causality, is a promising tool for the development of novel functional connectivity biomarkers of neurologic and psychiatric disease. Recently large-scale Granger causality (lsGC) has been proposed as an alternative to conventional Granger causality (cGC) that extends the scope of robust Granger causal analyses to high-dimensional systems such as the human brain. In this study, lsGC and cGC were comparatively evaluated on their ability to capture neurologic damage associated with HIV-associated neurocognitive disorders (HAND). Functional brain network models were constructed from rs-fMRI data collected from a cohort of HIV+ and HIV - subjects. Graph theoretic properties of the resulting networks were then used to train a support vector machine (SVM) model to predict clinically relevant parameters, such as HIV status and neuropsychometric (NP) scores. For the HIV+ /- classification task, lsGC, which yielded a peak area under the receiver operating characteristic curve (AUC) of 0.83, significantly outperformed cGC, which yielded a peak AUC of 0.61, at all parameter settings tested. For the NP score regression task, lsGC, with a minimum mean squared error (MSE) of 0.75, significantly outperformed cGC, with a minimum MSE of 0.84 (p < 0.001, one-tailed paired t-test). These results show that, at optimal parameter settings, lsGC is better able to capture functional brain connectivity correlates of HAND than cGC. However, given the substantial variation in the performance of the two methods at different parameter settings, particularly for the regression task, improved parameter selection criteria are necessary and constitute an area for future research.

7.
Neuroimage ; 178: 210-223, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29777828

RESUMO

Functional connectivity analysis of functional MRI (fMRI) can represent brain networks and reveal insights into interactions amongst different brain regions. However, most connectivity analysis approaches adopted in practice are linear and non-directional. In this paper, we demonstrate the advantage of a data-driven, directed connectivity analysis approach called Mutual Connectivity Analysis using Local Models (MCA-LM) that approximates connectivity by modeling nonlinear dependencies of signal interaction, over more conventionally used approaches, such as Pearson's and partial correlation, Patel's conditional dependence measures, etcetera. We demonstrate on realistic simulations of fMRI data that, at long sampling intervals, i.e. high repetition time (TR) of fMRI signals, MCA-LM performs better than or comparable to correlation-based methods and Patel's measures. However, at fast image acquisition rates corresponding to low TR, MCA-LM significantly outperforms these methods. This insight is particularly useful in the light of recent advances in fast fMRI acquisition techniques. Methods that can capture the complex dynamics of brain activity, such as MCA-LM, should be adopted to extract as much information as possible from the improved representation. Furthermore, MCA-LM works very well for simulations generated at weak neuronal interaction strengths, and simulations modeling inhibitory and excitatory connections as it disentangles the two opposing effects between pairs of regions/voxels. Additionally, we demonstrate that MCA-LM is capable of capturing meaningful directed connectivity on experimental fMRI data. Such results suggest that it introduces sufficient complexity into modeling fMRI time-series interactions that simple, linear approaches cannot, while being data-driven, computationally practical and easy to use. In conclusion, MCA-LM can provide valuable insights towards better understanding brain activity.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Acoplamento Neurovascular/fisiologia , Adulto , Simulação por Computador , Humanos , Fatores de Tempo
8.
Neuroimage Clin ; 17: 768-777, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527484

RESUMO

HIV is capable of invading the brain soon after seroconversion. This ultimately can lead to deficits in multiple cognitive domains commonly referred to as HIV-associated neurocognitive disorders (HAND). Clinical diagnosis of such deficits requires detailed neuropsychological assessment but clinical signs may be difficult to detect during asymptomatic injury of the central nervous system (CNS). Therefore neuroimaging biomarkers are of particular interest in HAND. In this study, we constructed brain connectivity profiles of 40 subjects (20 HIV positive subjects and 20 age-matched seronegative controls) using two different methods: a non-linear mutual connectivity analysis approach and a conventional method based on Pearson's correlation. These profiles were then summarized using graph-theoretic methods characterizing their topological network properties. Standard clinical and laboratory assessments were performed and a battery of neuropsychological (NP) tests was administered for all participating subjects. Based on NP testing, 14 of the seropositive subjects exhibited mild neurologic impairment. Subsequently, we analyzed associations between the network derived measures and neuropsychological assessment scores as well as common clinical laboratory plasma markers (CD4 cell count, HIV RNA) after adjusting for age and gender. Mutual connectivity analysis derived graph-theoretic measures, Modularity and Small Worldness, were significantly (p < 0.05, FDR adjusted) associated with the Executive as well as Overall z-score of NP performance. In contrast, network measures derived from conventional correlation-based connectivity did not yield any significant results. Thus, changes in connectivity can be captured using advanced time-series analysis techniques. The demonstrated associations between imaging-derived graph-theoretic properties of brain networks with neuropsychological performance, provides opportunities to further investigate the evolution of HAND in larger, longitudinal studies. Our analysis approach, involving non-linear time-series analysis in conjunction with graph theory, is promising and it may prove to be useful not only in HAND but also in other neurodegenerative disorders.


Assuntos
Encéfalo/fisiopatologia , Infecções por HIV/complicações , Vias Neurais/fisiopatologia , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/patologia , Adulto , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Estudos de Coortes , Conectoma , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Transtornos Neurocognitivos/virologia , Testes Neuropsicológicos , Oxigênio/sangue
9.
Comput Biol Med ; 95: 24-33, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29433038

RESUMO

Phase contrast X-ray computed tomography (PCI-CT) has been demonstrated to be effective for visualization of the human cartilage matrix at micrometer resolution, thereby capturing osteoarthritis induced changes to chondrocyte organization. This study aims to systematically assess the efficacy of deep transfer learning methods for classifying between healthy and diseased tissue patterns. We extracted features from two different convolutional neural network architectures, CaffeNet and Inception-v3 for characterizing such patterns. These features were quantitatively evaluated in a classification task measured by the area (AUC) under the Receiver Operating Characteristic (ROC) curve as well as qualitative visualization through a dimension reduction approach t-Distributed Stochastic Neighbor Embedding (t-SNE). The best classification performance, for CaffeNet, was observed when using features from the last convolutional layer and the last fully connected layer (AUCs >0.91). Meanwhile, off-the-shelf features from Inception-v3 produced similar classification performance (AUC >0.95). Visualization of features from these layers further confirmed adequate characterization of chondrocyte patterns for reliably distinguishing between healthy and osteoarthritic tissue classes. Such techniques, can be potentially used for detecting the presence of osteoarthritis related changes in the human patellar cartilage.


Assuntos
Cartilagem/diagnóstico por imagem , Condrócitos , Aprendizado de Máquina , Redes Neurais de Computação , Osteoartrite/diagnóstico por imagem , Patela/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Humanos
10.
Artigo em Inglês | MEDLINE | ID: mdl-29187770

RESUMO

Few studies have analyzed the microstructural properties of bone in cases of Osteogenenis Imperfecta (OI), or 'brittle bone disease'. Current approaches mainly focus on bone mineral density measurements as an indirect indicator of bone strength and quality. It has been shown that bone strength would depend not only on composition but also structural organization. This study aims to characterize 3D structure of the cortical bone in high-resolution micro CT images. A total of 40 bone fragments from 28 subjects (13 with OI and 15 healthy controls) were imaged using micro tomography using a synchrotron light source (SRµCT). Minkowski functionals - volume, surface, curvature, and Euler characteristics - describing the topological organization of the bone were computed from the images. The features were used in a machine learning task to classify between healthy and OI bone. The best classification performance (mean AUC - 0.96) was achieved with a combined 4-dimensional feature of all Minkowski functionals. Individually, the best feature performance was seen using curvature (mean AUC - 0.85), which characterizes the edges within a binary object. These results show that quantitative analysis of cortical bone microstructure, in a computer-aided diagnostics framework, can be used to distinguish between healthy and OI bone with high accuracy.

11.
Artigo em Inglês | MEDLINE | ID: mdl-29167591

RESUMO

We investigate the applicability of large-scale Granger Causality (lsGC) for extracting a measure of multivariate information flow between pairs of regional brain activities from resting-state functional MRI (fMRI) and test the effectiveness of these measures for predicting a disease state. Such pairwise multivariate measures of interaction provide high-dimensional representations of connectivity profiles for each subject and are used in a machine learning task to distinguish between healthy controls and individuals presenting with symptoms of HIV Associated Neurocognitive Disorder (HAND). Cognitive impairment in several domains can occur as a result of HIV infection of the central nervous system. The current paradigm for assessing such impairment is through neuropsychological testing. With fMRI data analysis, we aim at non-invasively capturing differences in brain connectivity patterns between healthy subjects and subjects presenting with symptoms of HAND. To classify the extracted interaction patterns among brain regions, we use a prototype-based learning algorithm called Generalized Matrix Learning Vector Quantization (GMLVQ). Our approach to characterize connectivity using lsGC followed by GMLVQ for subsequent classification yields good prediction results with an accuracy of 87% and an area under the ROC curve (AUC) of up to 0.90. We obtain a statistically significant improvement (p<0.01) over a conventional Granger causality approach (accuracy = 0.76, AUC = 0.74). High accuracy and AUC values using our multivariate method to connectivity analysis suggests that our approach is able to better capture changes in interaction patterns between different brain regions when compared to conventional Granger causality analysis known from the literature.

12.
Artigo em Inglês | MEDLINE | ID: mdl-29167592

RESUMO

Clinically Isolated Syndrome (CIS) is often considered to be the first neurological episode associated with Multiple sclerosis (MS). At an early stage the inflammatory demyelination occurring in the CNS can manifest as a change in neuronal metabolism, with multiple asymptomatic white matter lesions detected in clinical MRI. Such damage may induce topological changes of brain networks, which can be captured by advanced functional MRI (fMRI) analysis techniques. We test this hypothesis by capturing the effective relationships of 90 brain regions, defined in the Automated Anatomic Labeling (AAL) atlas, using a large-scale Granger Causality (lsGC) framework. The resulting networks are then characterized using graph-theoretic measures that quantify various network topology properties at a global as well as at a local level. We study for differences in these properties in network graphs obtained for 18 subjects (10 male and 8 female, 9 with CIS and 9 healthy controls). Global network properties captured trending differences with modularity and clustering coefficient (p<0.1). Additionally, local network properties, such as local efficiency and the strength of connections, captured statistically significant (p<0.01) differences in some regions of the inferior frontal and parietal lobe. We conclude that multivariate analysis of fMRI time-series can reveal interesting information about changes occurring in the brain in early stages of MS.

13.
Proc SPIE Int Soc Opt Eng ; 101372017 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29170578

RESUMO

Infection of the brain by the Human Immunodeficiency Virus (HIV) causes irreversible damage to the synaptic connections resulting in cognitive impairment. Patients with HIV infection, showing signs of impairment in multiple cognitive domains, as assessed by neuropsychological testing, are said to exhibit symptoms of HIV Associated Neurocognitive Disorder (HAND). In this study, we use resting-state functional MRI (fMRI) data to distinguish between healthy subjects and subjects with symptoms of HAND. To this end, we first establish a measure of interaction between pairs of regional time-series by quantifying their non-linear functional connectivity using Mutual Connectivity Analysis (MCA). Subsequently, we use a classifier to distinguish patterns of interaction between healthy and diseased individuals. Our results, quantified as the mean Area under the ROC curve (AUC) over 75 iterations, indicate that, using fMRI data, we can discriminate between the two cohorts well (AUC > 0.8). Specifically, we find that MCA (mean AUC = 0.89) based connectivity features perform significantly better (p < 0.05) when compared to cross-correlation (mean AUC = 0.82) at the classification task. A higher AUC using our approach suggests that such a nonlinear approach is better able to capture connectivity changes between brain regions and has potential for the development of novel neuro-imaging biomarkers.

14.
J Neurosci Methods ; 287: 68-79, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28629720

RESUMO

BACKGROUND: Large-scale Granger causality (lsGC) is a recently developed, resting-state functional MRI (fMRI) connectivity analysis approach that estimates multivariate voxel-resolution connectivity. Unlike most commonly used multivariate approaches, which establish coarse-resolution connectivity by aggregating voxel time-series avoiding an underdetermined problem, lsGC estimates voxel-resolution, fine-grained connectivity by incorporating an embedded dimension reduction. NEW METHOD: We investigate application of lsGC on realistic fMRI simulations, modeling smoothing of neuronal activity by the hemodynamic response function and repetition time (TR), and empirical resting-state fMRI data. Subsequently, functional subnetworks are extracted from lsGC connectivity measures for both datasets and validated quantitatively. We also provide guidelines to select lsGC free parameters. RESULTS: Results indicate that lsGC reliably recovers underlying network structure with area under receiver operator characteristic curve (AUC) of 0.93 at TR=1.5s for a 10-min session of fMRI simulations. Furthermore, subnetworks of closely interacting modules are recovered from the aforementioned lsGC networks. Results on empirical resting-state fMRI data demonstrate recovery of visual and motor cortex in close agreement with spatial maps obtained from (i) visuo-motor fMRI stimulation task-sequence (Accuracy=0.76) and (ii) independent component analysis (ICA) of resting-state fMRI (Accuracy=0.86). COMPARISON WITH EXISTING METHOD(S): Compared with conventional Granger causality approach (AUC=0.75), lsGC produces better network recovery on fMRI simulations. Furthermore, it cannot recover functional subnetworks from empirical fMRI data, since quantifying voxel-resolution connectivity is not possible as consequence of encountering an underdetermined problem. CONCLUSIONS: Functional network recovery from fMRI data suggests that lsGC gives useful insight into connectivity patterns from resting-state fMRI at a multivariate voxel-resolution.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Algoritmos , Área Sob a Curva , Simulação por Computador , Humanos , Masculino , Modelos Neurológicos , Análise Multivariada , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Análise de Componente Principal , Curva ROC , Descanso
15.
Artigo em Inglês | MEDLINE | ID: mdl-29367797

RESUMO

The current clinical standard for measuring Bone Mineral Density (BMD) is dual X-ray absorptiometry, however more recently BMD derived from volumetric quantitative computed tomography has been shown to demonstrate a high association with spinal fracture susceptibility. In this study, we propose a method of fracture risk assessment using structural properties of trabecular bone in spinal vertebrae. Experimental data was acquired via axial multi-detector CT (MDCT) from 12 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. Common image processing methods were used to annotate the trabecular compartment in the vertebral slices creating a circular region of interest (ROI) that excluded cortical bone for each slice. The pixels inside the ROI were converted to values indicative of BMD. High dimensional geometrical features were derived using the scaling index method (SIM) at different radii and scaling factors (SF). The mean BMD values within the ROI were then extracted and used in conjunction with a support vector machine to predict the failure load of the specimens. Prediction performance was measured using the root-mean-square error (RMSE) metric and determined that SIM combined with mean BMD features (RMSE = 0.82 ± 0.37) outperformed MDCT-measured mean BMD (RMSE = 1.11 ± 0.33) (p < 10-4). These results demonstrate that biomechanical strength prediction in vertebrae can be significantly improved through the use of SIM-derived texture features from trabecular bone.

16.
Artigo em Inglês | MEDLINE | ID: mdl-28835729

RESUMO

Phase contrast X-ray computed tomography (PCI-CT) has recently emerged as a novel imaging technique that allows visualization of cartilage soft tissue, subsequent examination of chondrocyte patterns, and their correlation to osteoarthritis. Previous studies have shown that 2D texture features are effective at distinguishing between healthy and osteoarthritic regions of interest annotated in the radial zone of cartilage matrix on PCI-CT images. In this study, we further extend the texture analysis to 3D and investigate the ability of volumetric texture features at characterizing chondrocyte patterns in the cartilage matrix for purposes of classification. Here, we extracted volumetric texture features derived from Minkowski Functionals and gray-level co-occurrence matrices (GLCM) from 496 volumes of interest (VOI) annotated on PCI-CT images of human patellar cartilage specimens. The extracted features were then used in a machine-learning task involving support vector regression to classify ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). The best classification performance was observed with GLCM features correlation (AUC = 0.83 ± 0.06) and homogeneity (AUC = 0.82 ± 0.07), which significantly outperformed all Minkowski Functionals (p < 0.05). These results suggest that such quantitative analysis of chondrocyte patterns in human patellar cartilage matrix involving GLCM-derived statistical features can distinguish between healthy and osteoarthritic tissue with high accuracy.

17.
Artigo em Inglês | MEDLINE | ID: mdl-29151666

RESUMO

Echo state networks (ESN) are recurrent neural networks where the hidden layer is replaced with a fixed reservoir of neurons. Unlike feed-forward networks, neuron training in ESN is restricted to the output neurons alone thereby providing a computational advantage. We demonstrate the use of such ESNs in our mutual connectivity analysis (MCA) framework for recovering the primary motor cortex network associated with hand movement from resting state functional MRI (fMRI) data. Such a framework consists of two steps - (1) defining a pair-wise affinity matrix between different pixel time series within the brain to characterize network activity and (2) recovering network components from the affinity matrix with non-metric clustering. Here, ESNs are used to evaluate pair-wise cross-estimation performance between pixel time series to create the affinity matrix, which is subsequently subject to non-metric clustering with the Louvain method. For comparison, the ground truth of the motor cortex network structure is established with a task-based fMRI sequence. Overlap between the primary motor cortex network recovered with our model free MCA approach and the ground truth was measured with the Dice coefficient. Our results show that network recovery with our proposed MCA approach is in close agreement with the ground truth. Such network recovery is achieved without requiring low-pass filtering of the time series ensembles prior to analysis, an fMRI preprocessing step that has courted controversy in recent years. Thus, we conclude our MCA framework can allow recovery and visualization of the underlying functionally connected networks in the brain on resting state fMRI.

18.
Artigo em Inglês | MEDLINE | ID: mdl-29200590

RESUMO

While the proximal femur is preferred for measuring bone mineral density (BMD) in fracture risk estimation, the introduction of volumetric quantitative computed tomography has revealed stronger associations between BMD and spinal fracture status. In this study, we propose to capture properties of trabecular bone structure in spinal vertebrae with advanced second-order statistical features for purposes of fracture risk assessment. For this purpose, axial multi-detector CT (MDCT) images were acquired from 28 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. A semi-automated method was used to annotate the trabecular compartment in the central vertebral slice with a circular region of interest (ROI) to exclude cortical bone; pixels within were converted to values indicative of BMD. Six second-order statistical features derived from gray-level co-occurrence matrices (GLCM) and the mean BMD within the ROI were then extracted and used in conjunction with a generalized radial basis functions (GRBF) neural network to predict the failure load of the specimens; true failure load was measured through biomechanical testing. Prediction performance was evaluated with a root-mean-square error (RMSE) metric. The best prediction performance was observed with GLCM feature 'correlation' (RMSE = 1.02 ± 0.18), which significantly outperformed all other GLCM features (p < 0.01). GLCM feature correlation also significantly outperformed MDCT-measured mean BMD (RMSE = 1.11 ± 0.17) (p < 10-4). These results suggest that biomechanical strength prediction in spinal vertebrae can be significantly improved through characterization of trabecular bone structure with GLCM-derived texture features.

19.
Artigo em Inglês | MEDLINE | ID: mdl-29200591

RESUMO

Functional MRI (fMRI) is currently used to investigate structural and functional connectivity in human brain networks. To this end, previous studies have proposed computational methods that involve assumptions that can induce information loss, such as assumed linear coupling of the fMRI signals or requiring dimension reduction. This study presents a new computational framework for investigating the functional connectivity in the brain and recovering network structure while reducing the information loss inherent in previous methods. For this purpose, pair-wise mutual information (MI) was extracted from all pixel time series within the brain on resting-state fMRI data. Non-metric topographic mapping of proximity (TMP) data was subsequently applied to recover network structure from the pair-wise MI analysis. Our computational framework is demonstrated in the task of identifying regions of the primary motor cortex network on resting state fMRI data. For ground truth comparison, we also localized regions of the primary motor cortex associated with hand movement in a task-based fMRI sequence with a finger-tapping stimulus function. The similarity between our pair-wise MI clustering results and the ground truth is evaluated using the dice coefficient. Our results show that non-metric clustering with the TMP algorithm, as performed on pair-wise MI analysis, was able to detect the primary motor cortex network and achieved a dice coefficient of 0.53 in terms of overlap with the ground truth. Thus, we conclude that our computational framework can extract and visualize valuable information concerning the underlying network structure between different regions of the brain in resting state fMRI.

20.
Artigo em Inglês | MEDLINE | ID: mdl-29367796

RESUMO

We explore a computational framework for functional connectivity analysis in resting-state functional MRI (fMRI) data acquired from the human brain for recovering the underlying network structure and understanding causality between network components. Termed mutual connectivity analysis (MCA), this framework involves two steps, the first of which is to evaluate the pair-wise cross-prediction performance between fMRI pixel time series within the brain. In a second step, the underlying network structure is subsequently recovered from the affinity matrix using non-metric network clustering approaches, such as the so-called Louvain method. Finally, we use convergent cross-mapping (CCM) to study causality between different network components. We demonstrate our MCA framework in the problem of recovering the motor cortex network associated with hand movement from resting state fMRI data. Results are compared with a ground truth of active motor cortex regions as identified by a task-based fMRI sequence involving a finger-tapping stimulation experiment. Our results regarding causation between regions of the motor cortex revealed a significant directional variability and were not readily interpretable in a consistent manner across subjects. However, our results on whole-slice fMRI analysis demonstrate that MCA-based model-free recovery of regions associated with the primary motor cortex and supplementary motor area are in close agreement with localization of similar regions achieved with a task-based fMRI acquisition. Thus, we conclude that our MCA methodology can extract and visualize valuable information concerning the underlying network structure between different regions of the brain in resting state fMRI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA