Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(4): 2367-2377, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456841

RESUMO

Soil quality is one of the main limiting factor in the development of the food sector in arid areas, mainly due to its poor mechanics and lack of water retention. Soil's organic carbon is nearly absent in arid soils, though it is important for water and nutrient transport, to soil mechanics, to prevent erosion, and as a long-term carbon sink. In this study, we evaluate the potential benefits that are brought to inert sand by the incorporation of a range of, mainly, cellulosic networks in their polymeric or structured (fiber) forms, analogously to those found in healthy soils. We explore the impact of a wide range of nonfood polysaccharide-based amendments, including pulp fibers, nanocellulose, cellulose derivatives, and other readily available polysaccharide structures derived from arthropods (chitosan) or fruit peels (pectin) residues. A practical methodology is presented to form sand-polymer composites, which are evaluated for their soil mechanics as a function of humidity and the dynamics of their response to water. The mechanics are correlated to the network of polymers formed within the pores of the sandy soil, as observed by electron microscopy. The response to water is correlated to both the features of the network and the individual polysaccharides' physicochemical features. We expect this work to provide a rapid and reproducible methodology to benchmark sustainable organic amendments for arid soils.


Assuntos
Celulose , Areia , Benchmarking , Umidade , Solo/química , Água/química , Polímeros
2.
Adv Colloid Interface Sci ; 324: 103095, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301316

RESUMO

Direct ink writing (DIW) stands as a pioneering additive manufacturing technique that holds transformative potential in the field of hydrogel fabrication. This innovative approach allows for the precise deposition of hydrogel inks layer by layer, creating complex three-dimensional structures with tailored shapes, sizes, and functionalities. By harnessing the versatility of hydrogels, DIW opens up possibilities for applications spanning from tissue engineering to soft robotics and wearable devices. This comprehensive review investigates DIW as applied to hydrogels and its multifaceted applications. The paper introduces a diverse range of printing techniques while providing a thorough exploration of DIW for hydrogel-based printing. The investigation aims to explain the progress made, challenges faced, and potential trajectories that lie ahead for DIW in hydrogel-based manufacturing. The fundamental principles underlying DIW are carefully examined, specifically focusing on rheological attributes and printing parameters, prompting a comprehensive survey of the wide variety of hydrogel materials. These encompass both natural and synthetic variations, all of which can be effectively harnessed for this purpose. Furthermore, the review explores the latest applications of DIW for hydrogels in biomedical areas, with a primary focus on tissue engineering, wound dressing, and drug delivery systems. The document not only consolidates the existing state of DIW within the context of hydrogel-based manufacturing but also charts potential avenues for further research and innovative breakthroughs.


Assuntos
Hidrogéis , Tinta , Hidrogéis/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Reologia
3.
Green Chem ; 26(2): 593-630, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38264324

RESUMO

The demand for biodegradable materials across various industries has recently surged due to environmental concerns and the need for the adoption of renewable materials. In this context, lignin has emerged as a promising alternative, garnering significant attention as a biogenic resource that endows functional properties. This is primarily ascribed to its remarkable origin and structure that explains lignin's capacity to bind other molecules, reinforce composites, act as an antioxidant, and endow antimicrobial effects. This review summarizes recent advances in lignin-based composites, with particular emphasis on innovative methods for modifying lignin into micro and nanostructures and evaluating their functional contribution. Indeed, lignin-based composites can be tailored to have superior physicomechanical characteristics, biodegradability, and surface properties, thereby making them suitable for applications beyond the typical, for instance, in ecofriendly adhesives and advanced barrier technologies. Herein, we provide a comprehensive overview of the latest progress in the field of lignin utilization in emerging composite materials.

4.
Carbohydr Polym ; 284: 119198, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35287913

RESUMO

Owing to its purity and exceptional mechanical performance, bacterial nanocellulose (BNC) is well suited for tissue engineering applications. BNC assembles as a network that features similarities with the extracellular matrix (ECM) while exhibiting excellent integrity in the wet state, suitable for suturing and sterilization. The development of complex 3D forms is shown by taking advantage of the aerobic process involved in the biogenesis of BNC at the air/culture medium interphase. Hence, solid supports are used to guide the formation of BNC biofilms that easily form auxetic structures. Such biomaterials are demonstrated as implantable meshes with prescribed opening size and infill density. The measured mechanical strength is easily adjustable (48-456 MPa tensile strength) while ensuring shape stability (>87% shape retention after 100 burst loading/unloading cycles). We further study the cytotoxicity, monocyte/macrophage pro-inflammatory activation, and phenotype to demonstrate the prospective use of BNC as supportive implants with long-term comfort and minimal biomaterial fatigue.


Assuntos
Materiais Biocompatíveis , Celulose , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Celulose/química , Estudos Prospectivos , Próteses e Implantes , Engenharia Tecidual
5.
ACS Nano ; 15(12): 19712-19721, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34784178

RESUMO

Colloids are suitable options to replace surfactants in the formation of multiphase systems while simultaneously achieving performance benefits. We introduce synergetic combination of colloids for the interfacial stabilization of complex fluids that can be converted into lightweight materials. The strong interactions between high aspect ratio and hydrophilic fibrillated cellulose (CNF) with low aspect ratio hydrophobic particles afford superstable Pickering foams. The foams were used as a scaffolding precursor of porous, solid materials. Compared to foams stabilized by the hydrophobic particles alone, the introduction of CNF significantly increased the foamability (by up to 350%) and foam lifetime. These effects are ascribed to the fibrillar network formed by CNF. The CNF solid fraction regulated the interparticle interactions in the wet foam, delaying or preventing drainage, coarsening, and bubble coalescence. Upon drying, such a complex fluid was transformed into lightweight and strong architectures, which displayed properties that depended on the surface energy of the CNF precursor. We show that CNF combined with hydrophobic particles universally forms superstable complex fluids that can be used as a processing route to synthesize strong composites and lightweight structures.

6.
Green Chem ; 23(18): 6966-6974, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671224

RESUMO

A new regioselective route is introduced for surface modification of biological colloids in the presence of water. Taking the case of cellulose nanofibers (CNFs), we demonstrate a site-specific (93% selective) reaction between the primary surface hydroxyl groups (C6-OH) of cellulose and acyl imidazoles. CNFs bearing C6-acetyl and C6-isobutyryl groups, with a degree of substitution of up to 1 mmol g-1 are obtained upon surface esterification, affording CNFs of adjustable surface energy. The morphological and structural features of the nanofibers remain largely unaffected, but the regioselective surface reactions enable tailoring of their interfacial interactions, as demonstrated in oil/water Pickering emulsions. Our method precludes the need for drying or exchange with organic solvents for surface esterification, otherwise needed in the synthesis of esterified colloids and polysaccharides. Moreover, the method is well suited for application at high-solid content, opening the possibility for implementation in reactive extrusion and compounding. The proposed acylation is introduced as a sustainable approach that benefits from the presence of water and affords a high chemical substitution selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA