Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 148, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37559084

RESUMO

Colorectal cancer (CRC) is the third cause of death by cancers worldwide and is one of the most common cancer types reported in both Egypt and the United States. The use of probiotics as a dietary therapy is increasing either as a prevention or as a treatment for many diseases, particularly, in the case of CRC. The increasing acceptance of lactic acid bacterial (LAB) oligosaccharides as bioactive agents has led to an increase in the demand for the large-scale production of LAB-oligosaccharides using fermentation technology. Therefore, in the current study, we are using the Plackett- Burman design (PBD) approach, where sixteen experimental trials were applied to optimize the production of the target oligosaccharide LA-EPS-20079 from Lactobacillus acidophilus. Glucose, yeast extract and sodium acetate trihydrate were the top three significant variables influencing LA-EPS production. The maximum concentration of LA-EPS-20079 achieved by L. acidophilus was 526.79 µg/ml. Furthermore, Box-Behnken design (BBD) as response surface methodology (RSM) was used to complete the optimization procedure. The optimal levels of the chosen variables which were 30.0 g/l, glucose; 5 g/l, yeast extract and 10.0 g/l sodium acetate trihydrate with the predicted LA-EPS-20079 concentration of 794.82 µg/ml. Model validity reached 99.93% when the results were verified. Both optimized trials showed great cytotoxic effects against colon cancer line (CaCo-2) with inhibition percentages ranging from 64.6 to 81.9%. Moreover, downregulation in the expression level of BCL2 and Survivin genes was found with a fold change of 3.377 and 21.38, respectively. Finally, we concluded that the optimized LA-EPS-20079 has maintained its anticancer effect against the CaCo-2 cell line that was previously reported by our research group.


Assuntos
Neoplasias do Colo , Probióticos , Humanos , Lactobacillus acidophilus/metabolismo , Projetos de Pesquisa , Células CACO-2 , Acetato de Sódio/metabolismo , Fermentação , Neoplasias do Colo/tratamento farmacológico , Glucose/metabolismo
2.
Microb Cell Fact ; 21(1): 141, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842620

RESUMO

BACKGROUND: There are substantial environmental and health risks associated with the seafood industry's waste of crab shells. In light of these facts, shellfish waste management is critical for environmental protection against hazardous waste produced from the processing industries. Undoubtedly, improved green production strategies, which are based on the notion of "Green Chemistry," are receiving a lot of attention. Therefore, this investigation shed light on green remediation of the potential hazardous crab shell waste for eco-friendly production of bacterial alkaline phosphatase (ALP) through bioprocessing development strategies. RESULTS: It was discovered that by utilizing sequential statistical experimental designs, commencing with Plackett-Burman design and ending with spherical central composite design, and then followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor, an innovative medium formulation could be developed that boosted ALP production from Bacillus licheniformis strain ALP3 to 212 U L-1. The highest yield of ALP was obtained after 22 h of incubation time with yield coefficient Yp/s of 795 U g-1, which was 4.35-fold higher than those obtained in the shake-flask system. ALP activity has a substantial impact on the volatilization of crab shell particles, as shown by the results of several analytical techniques such as atomic absorption spectrometry, TGA, DSC, EDS, FTIR, and XRD. CONCLUSIONS: We highlighted in the current study that the biovalorization of crab shell waste and the production of cost-effective ALP were being combined and that this was accomplished via the use of a new and innovative medium formulation design for seafood waste management as well as scaling up production of ALP on the bench-top scale.


Assuntos
Braquiúros , Gerenciamento de Resíduos , Fosfatase Alcalina , Animais , Braquiúros/química , Fermentação , Alimentos Marinhos
3.
Sci Rep ; 12(1): 8926, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624119

RESUMO

There is indeed a tremendous increase in biotechnological production on a global scale, more and more innovative bioprocesses, therefore, require to perform ideally not only in a small lab- but also on large production scales. Efficient microbial process optimization is a significant challenge when accomplishing a variety of sustainable development and bioengineering application objectives. In Egypt's mines, several distinct types of rock phosphate (RP) are utilized as a source of phosphate fertilizers in agriculture. It is more ecologically beneficial to utilize RP bio-solubilization than acidulation. Therefore, this work aimed to strategically scale up the acid phosphatase (ACP) production and RP bio-solubilization by the newly-discovered Bacillus haynesii. The use of consecutive statistical experimental approaches of Plackett-Burman Design (PBD), and Rotatable Central Composite Design (RCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor revealed an innovative medium formulation. These approaches substantially improved ACP production, reaching 207.6 U L-1 with an ACP yield coefficient Yp/x of 25.2 and a specific growth rate (µ) of 0.07 h-1. The metals Na, Li, and Mn were the most efficiently released from RP during the solubilization process by B. haynesii. The uncontrolled pH culture condition is the most suitable setting for simultaneously improving the ACP and organic acids production. The most abundant organic acid produced through the cultivation process was lactic acid, followed by glutamic acid and hydroxybenzoic acid isomer. The findings of TGA, DSC, SEM, EDS, FTIR, and XRD analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of RP particles.


Assuntos
Fosfatase Ácida , Bacillus , Fosfatos , Fosfatase Ácida/biossíntese , Bacillus/enzimologia , Fertilizantes , Fosfatos/metabolismo
4.
Sci Rep ; 11(1): 17564, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475429

RESUMO

This study highlighted the exploitation of mathematical models for optimizing the growth conditions that give the highest phosphatase productivity from a newfound Lysinibacillus sp. strain APSO isolated from a slime sample. Mathematical models facilitate data interpretation and provide a strategy to solve fermentation problems. Alkaline phosphatase (ALP) throughput was enhanced by 16.5-fold compared to basal medium based on a sequential optimization strategy that depended on two-level Plackett-Burman design and central composite design. The additional improvement for volumetric productivity and specific production yield was followed in a 7 L bench-top bioreactor to evaluate microbial growth kinetics under controlled and uncontrolled pH conditions. The pH-controlled batch cultivation condition neither supported cell growth nor enhanced ALP productivity. In contrast, the uncontrolled pH batch cultivation condition provided the highest ALP output (7119.4 U L-1) and specific growth rate (µ = 0.188 h-1) at 15 h from incubation time, which was augmented > 20.75-fold compared to the basal medium. To the authors' knowledge, this study is the second report that deals with how to reduce the production cost of the ALP production process via utilization of agro-industrial waste, such as molasses and food waste (eggshell), as a nutrimental source for the improvement of the newfound Lysinibacillus sp. strain APSO ALP throughput.

6.
Sci Rep ; 11(1): 6071, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727590

RESUMO

To meet the present and forecasted market demand, bacterial alkaline phosphatase (ALP) production must be increased through innovative and efficient production strategies. Using sugarcane molasses and biogenic apatite as low-cost and easily available raw materials, this work demonstrates the scalability of ALP production from a newfound Bacillus paralicheniformis strain APSO isolated from a black liquor sample. Mathematical experimental designs including sequential Plackett-Burman followed by rotatable central composite designs were employed to select and optimize the concentrations of the statistically significant media components, which were determined to be molasses, (NH4)2NO3, and KCl. Batch cultivation in a 7-L stirred-tank bioreactor under uncontrolled pH conditions using the optimized medium resulted in a significant increase in both the volumetric and specific productivities of ALP; the alkaline phosphatase throughput 6650.9 U L-1, and µ = 0.0943 h-1; respectively, were obtained after 8 h that, ameliorated more than 20.96, 70.12 and 94 folds compared to basal media, PBD, and RCCD; respectively. However, neither the increased cell growth nor enhanced productivity of ALP was present under the pH-controlled batch cultivation. Overall, this work presents novel strategies for the statistical optimization and scaling up of bacterial ALP production using biogenic apatite.


Assuntos
Fosfatase Alcalina , Bacillus , Proteínas de Bactérias , Fosfatase Alcalina/biossíntese , Fosfatase Alcalina/química , Fosfatase Alcalina/isolamento & purificação , Bacillus/enzimologia , Bacillus/crescimento & desenvolvimento , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA