Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Malar J ; 16(1): 263, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28673287

RESUMO

BACKGROUND: A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. RESULTS: The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. CONCLUSION: These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.


Assuntos
Adenovirus dos Símios , Vetores Genéticos/normas , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Infecções por Adenovirus Humanos/epidemiologia , Infecções por Adenovirus Humanos/virologia , Adenovirus dos Símios/genética , Adenovirus dos Símios/imunologia , Animais , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Feminino , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Gana/epidemiologia , Gorilla gorilla , Humanos , Interferon gama/sangue , Quênia/epidemiologia , Malária/epidemiologia , Vacinas Antimaláricas/normas , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos , Plasmodium yoelii/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Estudos Soroepidemiológicos , Baço/citologia , Baço/imunologia , Linfócitos T/imunologia , Transgenes/imunologia , Estados Unidos/epidemiologia
2.
Clin Vaccine Immunol ; 24(4)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28179404

RESUMO

Malaria is caused by parasites of the genus Plasmodium, which are transmitted to humans by the bites of Anopheles mosquitoes. After the elimination of Plasmodium falciparum, it is predicted that Plasmodium vivax will remain an important cause of morbidity and mortality outside Africa, stressing the importance of developing a vaccine against P. vivax malaria. In this study, we assessed the immunogenicity and protective efficacy of two P. vivax antigens, apical membrane antigen 1 (AMA1) and the 42-kDa C-terminal fragment of merozoite surface protein 1 (MSP142) in a plasmid recombinant DNA prime/adenoviral (Ad) vector boost regimen in Aotus monkeys. Groups of 4 to 5 monkeys were immunized with plasmid DNA alone, Ad alone, prime/boost regimens with each antigen, prime/boost regimens with both antigens, and empty vector controls and then subjected to blood-stage challenge. The heterologous immunization regimen with the antigen pair was more protective than either antigen alone or both antigens delivered with a single vaccine platform, on the basis of their ability to induce the longest prepatent period and the longest time to the peak level of parasitemia, the lowest peak and mean levels of parasitemia, the smallest area under the parasitemia curve, and the highest self-cure rate. Overall, prechallenge MSP142 antibody titers strongly correlated with a decreased parasite burden. Nevertheless, a significant proportion of immunized animals developed anemia. In conclusion, the P. vivax plasmid DNA/Ad serotype 5 vaccine encoding blood-stage parasite antigens AMA1 and MSP142 in a heterologous prime/boost immunization regimen provided significant protection against blood-stage challenge in Aotus monkeys, indicating the suitability of these antigens and this regimen for further development.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Proteínas de Membrana/imunologia , Proteína 1 de Superfície de Merozoito/imunologia , Proteínas de Protozoários/imunologia , Vacinas de DNA/imunologia , Anemia/prevenção & controle , Animais , Anticorpos Antiprotozoários/sangue , Aotidae , Modelos Animais de Doenças , Feminino , Vacinas Antimaláricas/administração & dosagem , Malária Vivax/imunologia , Masculino , Parasitemia/prevenção & controle , Resultado do Tratamento , Vacinas de DNA/administração & dosagem
3.
JCI Insight ; 2(1): e89154, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28097230

RESUMO

BACKGROUND: A radiation-attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) malaria vaccine, PfSPZ Vaccine, protected 6 of 6 subjects (100%) against homologous Pf (same strain as in the vaccine) controlled human malaria infection (CHMI) 3 weeks after 5 doses administered intravenously. The next step was to assess protective efficacy against heterologous Pf (different from Pf in the vaccine), after fewer doses, and at 24 weeks. METHODS: The trial assessed tolerability, safety, immunogenicity, and protective efficacy of direct venous inoculation (DVI) of 3 or 5 doses of PfSPZ Vaccine in non-immune subjects. RESULTS: Three weeks after final immunization, 5 doses of 2.7 × 105 PfSPZ protected 12 of 13 recipients (92.3% [95% CI: 48.0, 99.8]) against homologous CHMI and 4 of 5 (80.0% [10.4, 99.5]) against heterologous CHMI; 3 doses of 4.5 × 105 PfSPZ protected 13 of 15 (86.7% [35.9, 98.3]) against homologous CHMI. Twenty-four weeks after final immunization, the 5-dose regimen protected 7 of 10 (70.0% [17.3, 93.3]) against homologous and 1 of 10 (10.0% [-35.8, 45.6]) against heterologous CHMI; the 3-dose regimen protected 8 of 14 (57.1% [21.5, 76.6]) against homologous CHMI. All 22 controls developed Pf parasitemia. PfSPZ Vaccine was well tolerated, safe, and easy to administer. No antibody or T cell responses correlated with protection. CONCLUSIONS: We have demonstrated for the first time to our knowledge that PfSPZ Vaccine can protect against a 3-week heterologous CHMI in a limited group of malaria-naive adult subjects. A 3-dose regimen protected against both 3-week and 24-week homologous CHMI (87% and 57%, respectively) in this population. These results provide a foundation for developing an optimized immunization regimen for preventing malaria. TRIAL REGISTRATION: ClinicalTrials.gov NCT02215707. FUNDING: Support was provided through the US Army Medical Research and Development Command, Military Infectious Diseases Research Program, and the Naval Medical Research Center's Advanced Medical Development Program.


Assuntos
Malária Falciparum/terapia , Plasmodium falciparum/efeitos dos fármacos , Esporozoítos/efeitos dos fármacos , Vacinas Atenuadas/administração & dosagem , Administração Intravenosa , Adulto , Feminino , Humanos , Malária Falciparum/prevenção & controle , Masculino , Plasmodium falciparum/genética , Esporozoítos/genética , Linfócitos T/imunologia , Vacinas Atenuadas/uso terapêutico , Sequenciamento Completo do Genoma/métodos
4.
Malar J ; 15(1): 377, 2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27448805

RESUMO

BACKGROUND: In this phase 1 clinical trial, healthy adult, malaria-naïve subjects were immunized with radiation-attenuated Plasmodium falciparum sporozoites (PfRAS) by mosquito bite and then underwent controlled human malaria infection (CHMI). The PfRAS model for immunization against malaria had previously induced >90 % sterile protection against homologous CHMI. This study was to further explore the safety, tolerability and protective efficacy of the PfRAS model and to provide biological specimens to characterize protective immune responses and identify protective antigens in support of malaria vaccine development. METHODS: Fifty-seven subjects were screened, 41 enrolled and 30 received at least one immunization. The true-immunized subjects received PfRAS via mosquito bite and the mock-immunized subjects received mosquito bites from irradiated uninfected mosquitoes. Sera and peripheral blood mononuclear cells (PBMCs) were collected before and after PfRAS immunizations. RESULTS: Immunization with PfRAS was generally safe and well tolerated, and repeated immunization via mosquito bite did not appear to increase the risk or severity of AEs. Local adverse events (AEs) of true-immunized and mock-immunized groups consisted of erythaema, papules, swelling, and induration and were consistent with reactions from mosquito bites seen in nature. Two subjects, one true- and one mock-immunized, developed large local reactions that completely resolved, were likely a result of mosquito salivary antigens, and were withdrawn from further participation as a safety precaution. Systemic AEs were generally rare and mild, consisting of headache, myalgia, nausea, and low-grade fevers. Two true-immunized subjects experienced fever, malaise, myalgia, nausea, and rigours approximately 16 h after immunization. These symptoms likely resulted from pre-formed antibodies interacting with mosquito salivary antigens. Ten subjects immunized with PfRAS underwent CHMI and five subjects (50 %) were sterilely protected and there was a significant delay to parasitaemia in the other five subjects. All ten subjects developed humoral immune responses to whole sporozoites and to the circumsporozoite protein prior to CHMI, although the differences between protected and non-protected subjects were not statistically significant for this small sample size. CONCLUSIONS: The protective efficacy of this clinical trial (50 %) was notably less than previously reported (>90 %). This may be related to differences in host genetics or the inherent variability in mosquito biting behavior and numbers of sporozoites injected. Differences in trial procedures, such as the use of leukapheresis prior to CHMI and of a longer interval between the final immunization and CHMI in these subjects compared to earlier trials, may also have reduced protective efficacy. This trial has been retrospectively registered at ISRCTN ID 17372582, May 31, 2016.


Assuntos
Anticorpos Antiprotozoários/sangue , Culicidae/fisiologia , Mordeduras e Picadas de Insetos , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Adolescente , Adulto , Animais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Humanos , Vacinas Antimaláricas/administração & dosagem , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/efeitos da radiação , Esporozoítos/imunologia , Esporozoítos/efeitos da radiação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia , Adulto Jovem
5.
Hum Vaccin Immunother ; 11(11): 2705-15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26292027

RESUMO

We have previously shown that a DNA-prime followed by an adenovirus-5 boost vaccine containing CSP and AMA1 (DNA/Ad) successfully protected 4 of 15 subjects to controlled human malaria infection (CHMI). However, the adenovirus-5 vaccine alone (AdCA) failed to induce protection despite eliciting cellular responses that were often higher than those induced by DNA/Ad. Here we determined the effect of CHMI on pre-CHMI cellular and antibody responses against CSP and AMA1 expressed as fold-changes in activities. Generally, in the DNA/Ad trial, CHMI caused pre-CHMI ELISpot IFN-γ and CD8+ T cell IFN-γ responses of the protected subjects to fall but among non-protected subjects, CHMI caused rises of pre-CHMI ELISpot IFN-γ but falls of CD8+ T cell IFN-γ responses. In contrast in the AdCA trial, CHMI caused both pre-CHMI ELISpot IFN-γ and CD8+ T cell IFN-γ responses of the AdCA subjects to fall. We suggest that the falls in activities are due to migration of peripheral CD8+ T cells to the liver in response to developing liver stage parasites, and this fall, in the DNA/Ad trial, is masked in ELISpot responses of the non-protected subjects by rises in other immune cell types. In addition, CHMI caused falls in antibody activities of protected subjects, but rises in non-protected subjects in both trials to CSP, and dramatically in the AdCA trial to AMA1, reaching 380 µg/ml that is probably due to boosting by transient blood stage infection before chloroquine treatment. Taken together, these results further define differences in cellular responses between DNA/Ad and AdCA trials, and suggest that natural transmission may boost responses induced by these malaria vaccines especially when protection is not achieved.


Assuntos
Vacinas contra Adenovirus/imunologia , Formação de Anticorpos , Antígenos de Protozoários/imunologia , Imunidade Celular , Vacinas Antimaláricas/imunologia , Proteínas de Membrana/imunologia , Proteínas de Protozoários/imunologia , Vacinas de DNA/imunologia , Vacinas contra Adenovirus/administração & dosagem , Vacinas contra Adenovirus/genética , Linfócitos T CD8-Positivos/imunologia , ELISPOT , Humanos , Interferon gama/metabolismo , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/genética , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
6.
PLoS One ; 9(9): e106241, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25211344

RESUMO

BACKGROUND: Fifteen volunteers were immunized with three doses of plasmid DNA encoding P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) and boosted with human adenovirus-5 (Ad) expressing the same antigens (DNA/Ad). Four volunteers (27%) demonstrated sterile immunity to controlled human malaria infection and, overall, protection was statistically significantly associated with ELISpot and CD8+ T cell IFN-γ activities to AMA1 but not CSP. DNA priming was required for protection, as 18 additional subjects immunized with Ad alone (AdCA) did not develop sterile protection. METHODOLOGY/PRINCIPAL FINDINGS: We sought to identify correlates of protection, recognizing that DNA-priming may induce different responses than AdCA alone. Among protected volunteers, two and three had higher ELISpot and CD8+ T cell IFN-γ responses to CSP and AMA1, respectively, than non-protected volunteers. Unexpectedly, non-protected volunteers in the AdCA trial showed ELISpot and CD8+ T cell IFN-γ responses to AMA1 equal to or higher than the protected volunteers. T cell functionality assessed by intracellular cytokine staining for IFN-γ, TNF-α and IL-2 likewise did not distinguish protected from non-protected volunteers across both trials. However, three of the four protected volunteers showed higher effector to central memory CD8+ T cell ratios to AMA1, and one of these to CSP, than non-protected volunteers for both antigens. These responses were focused on discrete regions of CSP and AMA1. Class I epitopes restricted by A*03 or B*58 supertypes within these regions of AMA1 strongly recalled responses in three of four protected volunteers. We hypothesize that vaccine-induced effector memory CD8+ T cells recognizing a single class I epitope can confer sterile immunity to P. falciparum in humans. CONCLUSIONS/SIGNIFICANCE: We suggest that better understanding of which epitopes within malaria antigens can confer sterile immunity and design of vaccine approaches that elicit responses to these epitopes will increase the potency of next generation gene-based vaccines.


Assuntos
Antígenos de Protozoários/imunologia , Malária Falciparum/imunologia , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Adenoviridae/imunologia , Adulto , Antígenos de Protozoários/administração & dosagem , Linfócitos T CD8-Positivos/imunologia , DNA/administração & dosagem , DNA/imunologia , Epitopos/imunologia , Humanos , Memória Imunológica , Interferon gama/imunologia , Interleucina-2/imunologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Proteínas de Membrana/administração & dosagem , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/administração & dosagem , Fator de Necrose Tumoral alfa/imunologia
7.
Hum Vaccin Immunother ; 9(10): 2165-77, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23899517

RESUMO

BACKGROUND: In a prior study, a DNA prime / adenovirus boost vaccine (DNA/Ad) expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) (NMRC-M3V-D/Ad-PfCA Vaccine) induced 27% protection against controlled human malaria infection (CHMI). To investigate the contribution of DNA priming, we tested the efficacy of adenovirus vaccine alone (NMRC-M3V-Ad-PfCA ) in a Phase 1 clinical trial. METHODOLOGY/PRINCIPAL FINDINGS: The regimen was a single intramuscular injection with two non-replicating human serotype 5 adenovectors encoding CSP and AMA1, respectively. One x 10 (10) particle units of each construct were combined prior to administration. The regimen was safe and well-tolerated. Four weeks later, 18 study subjects received P. falciparum CHMI administered by mosquito bite. None were fully protected although one showed delayed onset of parasitemia. Antibody responses were low, with geometric mean CSP ELISA titer of 381 (range<50-1626) and AMA1 ELISA of 4.95 µg/mL (range 0.2-38). Summed ex vivo IFN-γ ELISpot responses to overlapping peptides were robust, with geometric mean spot forming cells/million peripheral blood mononuclear cells [sfc/m] for CSP of 273 (range 38-2550) and for AMA1 of 1303 (range 435-4594). CD4+ and CD8+ T cell IFN-γ responses to CSP were positive by flow cytometry in 25% and 56% of the research subjects, respectively, and to AMA1 in 94% and 100%, respectively. SIGNIFICANCE: In contrast to DNA/Ad, Ad alone did not protect against CHMI despite inducing broad, cell-mediated immunity, indicating that DNA priming is required for protection by the adenovirus-vectored vaccine. ClinicalTrials.gov Identifier: NCT00392015.


Assuntos
Adenovírus Humanos/genética , Antígenos de Protozoários/imunologia , Vetores Genéticos , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Adolescente , Adulto , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , Ensaio de Imunoadsorção Enzimática , ELISPOT , Feminino , Humanos , Injeções Intramusculares , Interferon gama/metabolismo , Leucócitos Mononucleares/imunologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/genética , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Adulto Jovem
8.
Malar J ; 12: 185, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23738590

RESUMO

BACKGROUND: Plasmodium falciparum circumsporozoite protein (CSP) is a leading malaria vaccine candidate antigen, known to elicit protective antibody responses in humans (RTS,S vaccine). Recently, a DNA prime / adenovirus (Ad) vector boost vaccine encoding CSP and a second P. falciparum antigen, apical membrane antigen-1, also elicited sterile protection, but in this case associated with interferon gamma ELISpot and CD8+ T cell but not antibody responses. The finding that CSP delivered by an appropriate vaccine platform likely elicits protective cell-mediated immunity provided a rationale for identifying class I-restricted epitopes within this leading vaccine candidate antigen. METHODS: Limited samples of peripheral blood mononuclear cells from clinical trials of the Ad vaccine were used to identify CD8+ T cell epitopes within pools of overlapping 15mer peptides spanning portions of CSP that stimulated recall responses. Computerized algorithms (NetMHC) predicted 17 minimal class I-restricted 9-10mer epitopes within fifteen 15mers positive in ELISpot assay using PBMC from 10 HLA-matched study subjects. Four additional epitopes were subsequently predicted using NetMHC, matched to other study subjects without initial 15mer ELISpot screening. Nine of the putative epitopes were synthesized and tested by ELISpot assay, and six of these nine were further tested for CD8+ T cell responses by ELISpot CD4+ and CD8+ T cell-depletion and flow cytometry assays for evidence of CD8+ T cell dependence. RESULTS: Each of the nine putative epitopes, all sequence-conserved, recalled responses from HLA-matched CSP-immunized research subjects. Four shorter sequences contained within these sequences were identified using NetMHC predictions and may have contributed to recall responses. Five (9-10mer) epitopes were confirmed to be targets of CD8+ T cell responses using ELISpot depletion and ICS assays. Two 9mers among these nine epitopes were each restricted by two HLA supertypes (A01/B07; A01A24/A24) and one 9mer was restricted by three HLA supertypes (A01A24/A24/B27) indicating that some CSP class I-restricted epitopes, like DR epitopes, may be HLA-promiscuous. CONCLUSIONS: This study identified nine and confirmed five novel class I epitopes restricted by six HLA supertypes, suggesting that an adenovirus-vectored CSP vaccine would be immunogenic and potentially protective in genetically diverse populations.


Assuntos
Mapeamento de Epitopos , Epitopos de Linfócito T/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Ensaios Clínicos como Assunto , Biologia Computacional , Experimentação Humana , Humanos , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
9.
PLoS One ; 8(2): e55571, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23457473

RESUMO

BACKGROUND: Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. METHODOLOGY/PRINCIPAL FINDINGS: The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44-817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5-102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13-408; AMA1 348, range 88-1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. SIGNIFICANCE: The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was associated with cell-mediated immunity to AMA1, with CSP probably contributing. Substituting a low seroprevalence vector for Ad5 and supplementing CSP/AMA1 with additional antigens may improve protection. TRIAL REGISTRATION: ClinicalTrials.govNCT00870987.


Assuntos
Adenovírus Humanos/genética , Antígenos de Protozoários/genética , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Proteínas de Membrana/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Vacinas de DNA/uso terapêutico , Adenovírus Humanos/imunologia , Adolescente , Adulto , Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Imunidade Celular , Interferon gama/imunologia , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Masculino , Proteínas de Membrana/imunologia , Pessoa de Meia-Idade , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Vacinas de DNA/efeitos adversos , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Adulto Jovem
10.
Hum Vaccin Immunother ; 8(11): 1564-84, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23151451

RESUMO

When introduced in the 1990s, immunization with DNA plasmids was considered potentially revolutionary for vaccine development, particularly for vaccines intended to induce protective CD8 T cell responses against multiple antigens. We conducted, in 1997-1998, the first clinical trial in healthy humans of a DNA vaccine, a single plasmid encoding Plasmodium falciparum circumsporozoite protein (PfCSP), as an initial step toward developing a multi-antigen malaria vaccine targeting the liver stages of the parasite. As the next step, we conducted in 2000-2001 a clinical trial of a five-plasmid mixture called MuStDO5 encoding pre-erythrocytic antigens PfCSP, PfSSP2/TRAP, PfEXP1, PfLSA1 and PfLSA3. Thirty-two, malaria-naïve, adult volunteers were enrolled sequentially into four cohorts receiving a mixture of 500 µg of each plasmid plus escalating doses (0, 20, 100 or 500 µg) of a sixth plasmid encoding human granulocyte macrophage-colony stimulating factor (hGM-CSF). Three doses of each formulation were administered intramuscularly by needle-less jet injection at 0, 4 and 8 weeks, and each cohort had controlled human malaria infection administered by five mosquito bites 18 d later. The vaccine was safe and well-tolerated, inducing moderate antigen-specific, MHC-restricted T cell interferon-γ responses but no antibodies. Although no volunteers were protected, T cell responses were boosted post malaria challenge. This trial demonstrated the MuStDO5 DNA and hGM-CSF plasmids to be safe and modestly immunogenic for T cell responses. It also laid the foundation for priming with DNA plasmids and boosting with recombinant viruses, an approach known for nearly 15 y to enhance the immunogenicity and protective efficacy of DNA vaccines.


Assuntos
Antígenos de Protozoários/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/uso terapêutico , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Esporozoítos/imunologia , Vacinas de DNA/imunologia , Vacinas de DNA/uso terapêutico , Adulto , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Vacinas Antimaláricas/administração & dosagem , Masculino , Pessoa de Meia-Idade , Plasmídeos/genética , Vacinas de DNA/efeitos adversos , Adulto Jovem
11.
PLoS One ; 6(10): e24586, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22003383

RESUMO

BACKGROUND: Models of immunity to malaria indicate the importance of CD8+ T cell responses for targeting intrahepatic stages and antibodies for targeting sporozoite and blood stages. We designed a multistage adenovirus 5 (Ad5)-vectored Plasmodium falciparum malaria vaccine, aiming to induce both types of responses in humans, that was tested for safety and immunogenicity in a Phase 1 dose escalation trial in Ad5-seronegative volunteers. METHODOLOGY/PRINCIPAL FINDINGS: The NMRC-M3V-Ad-PfCA vaccine combines two adenovectors encoding circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). Group 1 (n = 6) healthy volunteers received one intramuscular injection of 2×10∧10 particle units (1×10∧10 each construct) and Group 2 (n = 6) a five-fold higher dose. Transient, mild to moderate adverse events were more pronounced with the higher dose. ELISpot responses to CSP and AMA1 peaked at 1 month, were higher in the low dose (geomean CSP = 422, AMA1 = 862 spot forming cells/million) than in the high dose (CSP = 154, p = 0.049, AMA1 = 423, p = 0.045) group and were still positive at 12 months in a number of volunteers. ELISpot depletion assays identified dependence on CD4+ or on both CD4+ and CD8+ T cells, with few responses dependent only on CD8+ T cells. Intracellular cytokine staining detected stronger CD8+ than CD4+ T cell IFN-γ responses (CSP p = 0.0001, AMA1 p = 0.003), but similar frequencies of multifunctional CD4+ and CD8+ T cells secreting two or more of IFN-γ, TNF-α or IL-2. Median fluorescence intensities were 7-10 fold higher in triple than single secreting cells. Antibody responses were low but trended higher in the high dose group and did not inhibit growth of cultured P. falciparum blood stage parasites. SIGNIFICANCE: As found in other trials, adenovectored vaccines appeared safe and well-tolerated at doses up to 1×10∧11 particle units. This is the first demonstration in humans of a malaria vaccine eliciting strong CD8+ T cell IFN-γ responses. TRIAL REGISTRATION: ClinicalTrials.govNCT00392015.


Assuntos
Adenoviridae/genética , Antígenos de Protozoários/efeitos adversos , Antígenos de Protozoários/imunologia , Vetores Genéticos/genética , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/imunologia , Adolescente , Adulto , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Relação Dose-Resposta Imunológica , Feminino , Expressão Gênica , Humanos , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Interferon gama/metabolismo , Vacinas Antimaláricas/química , Vacinas Antimaláricas/genética , Masculino , Proteínas de Membrana/efeitos adversos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Pessoa de Meia-Idade , Fragmentos de Peptídeos/imunologia , Proteínas de Protozoários/efeitos adversos , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Adulto Jovem
12.
PLoS One ; 6(10): e25868, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22003411

RESUMO

BACKGROUND: A protective malaria vaccine will likely need to elicit both cell-mediated and antibody responses. As adenovirus vaccine vectors induce both these responses in humans, a Phase 1/2a clinical trial was conducted to evaluate the efficacy of an adenovirus serotype 5-vectored malaria vaccine against sporozoite challenge. METHODOLOGY/PRINCIPAL FINDINGS: NMRC-MV-Ad-PfC is an adenovirus vector encoding the Plasmodium falciparum 3D7 circumsporozoite protein (CSP). It is one component of a two-component vaccine NMRC-M3V-Ad-PfCA consisting of one adenovector encoding CSP and one encoding apical membrane antigen-1 (AMA1) that was evaluated for safety and immunogenicity in an earlier study (see companion paper, Sedegah et al). Fourteen Ad5 seropositive or negative adults received two doses of NMRC-MV-Ad-PfC sixteen weeks apart, at 1 x 1010 particle units per dose. The vaccine was safe and well tolerated. All volunteers developed positive ELISpot responses by 28 days after the first immunization (geometric mean 272 spot forming cells/million[sfc/m]) that declined during the following 16 weeks and increased after the second dose to levels that in most cases were less than the initial peak (geometric mean 119 sfc/m). CD8+ predominated over CD4+ responses, as in the first clinical trial. Antibody responses were poor and like ELISpot responses increased after the second immunization but did not exceed the initial peak. Pre-existing neutralizing antibodies (NAb) to Ad5 did not affect the immunogenicity of the first dose, but the fold increase in NAb induced by the first dose was significantly associated with poorer antibody responses after the second dose, while ELISpot responses remained unaffected. When challenged by the bite of P. falciparum-infected mosquitoes, two of 11 volunteers showed a delay in the time to patency compared to infectivity controls, but no volunteers were sterilely protected. SIGNIFICANCE: The NMRC-MV-Ad-PfC vaccine expressing CSP was safe and well tolerated given as two doses, but did not provide sterile protection. TRIAL REGISTRATION: ClinicalTrials.gov NCT00392015.


Assuntos
Adenoviridae/genética , Vetores Genéticos/genética , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/efeitos adversos , Proteínas de Protozoários/imunologia , Adolescente , Adulto , Antígenos de Protozoários/efeitos adversos , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Relação Dose-Resposta Imunológica , Feminino , Expressão Gênica , Humanos , Vacinas Antimaláricas/genética , Masculino , Proteínas de Membrana/efeitos adversos , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Pessoa de Meia-Idade , Plasmodium falciparum/citologia , Proteínas de Protozoários/genética , Esporozoítos/imunologia , Adulto Jovem
13.
Malar J ; 10: 168, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21689436

RESUMO

BACKGROUND: To prepare field sites for malaria vaccine trials, it is important to determine baseline antibody and T cell responses to candidate malaria vaccine antigens. Assessing T cell responses is especially challenging, given genetic restriction, low responses observed in endemic areas, their variability over time, potential suppression by parasitaemia and the intrinsic variability of the assays. METHODS: In Part A of this study, antibody titres were measured in adults from urban and rural communities in Ghana to recombinant Plasmodium falciparum CSP, SSP2/TRAP, LSA1, EXP1, MSP1, MSP3 and EBA175 by ELISA, and to sporozoites and infected erythrocytes by IFA. Positive ELISA responses were determined using two methods. T cell responses to defined CD8 or CD4 T cell epitopes from CSP, SSP2/TRAP, LSA1 and EXP1 were measured by ex vivo IFN-γ ELISpot assays using HLA-matched Class I- and DR-restricted synthetic peptides. In Part B, the reproducibility of the ELISpot assay to CSP and AMA1 was measured by repeating assays of individual samples using peptide pools and low, medium or high stringency criteria for defining positive responses, and by comparing samples collected two weeks apart. RESULTS: In Part A, positive antibody responses varied widely from 17%-100%, according to the antigen and statistical method, with blood stage antigens showing more frequent and higher magnitude responses. ELISA titres were higher in rural subjects, while IFA titres and the frequencies and magnitudes of ex vivo ELISpot activities were similar in both communities. DR-restricted peptides showed stronger responses than Class I-restricted peptides. In Part B, the most stringent statistical criteria gave the fewest, and the least stringent the most positive responses, with reproducibility slightly higher using the least stringent method when assays were repeated. Results varied significantly between the two-week time-points for many participants. CONCLUSIONS: All participants were positive for at least one malaria protein by ELISA, with results dependent on the criteria for positivity. Likewise, ELISpot responses varied among participants, but were relatively reproducible by the three methods tested, especially the least stringent, when assays were repeated. However, results often differed between samples taken two weeks apart, indicating significant biological variability over short intervals.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Linfócitos T/imunologia , Adolescente , Adulto , Ensaio de Imunoadsorção Enzimática , ELISPOT , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Gana , Humanos , Interferon gama/metabolismo , Vacinas Antimaláricas/imunologia , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes/imunologia , Reprodutibilidade dos Testes , População Rural , População Urbana , Adulto Jovem
14.
Malar J ; 10: 65, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21410955

RESUMO

BACKGROUND: Despite years of effort, a licensed malaria vaccine is not yet available. One of the obstacles facing the development of a malaria vaccine is the extensive heterogeneity of many of the current malaria vaccine antigens. To counteract this antigenic diversity, an effective malaria vaccine may need to elicit an immune response against multiple malaria antigens, thereby limiting the negative impact of variability in any one antigen. Since most of the malaria vaccine antigens that have been evaluated in people have not elicited a protective immune response, there is a need to identify additional protective antigens. In this study, the efficacy of three pre-erythrocytic stage malaria antigens was evaluated in a Plasmodium yoelii/mouse protection model. METHODS: Mice were immunized with plasmid DNA and vaccinia virus vectors that expressed one, two or all three P. yoelii vaccine antigens. The immunized mice were challenged with 300 P. yoelii sporozoites and evaluated for subsequent infection. RESULTS: Vaccines that expressed any one of the three antigens did not protect a high percentage of mice against a P. yoelii challenge. However, vaccines that expressed all three antigens protected a higher percentage of mice than a vaccine that expressed PyCSP, the most efficacious malaria vaccine antigen. Dissection of the multi-antigen vaccine indicated that protection was primarily associated with two of the three P. yoelii antigens. The protection elicited by a vaccine expressing these two antigens exceeded the sum of the protection elicited by the single antigen vaccines, suggesting a potential synergistic interaction. CONCLUSIONS: This work identifies two promising malaria vaccine antigen candidates and suggests that a multi-antigen vaccine may be more efficacious than a single antigen vaccine.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Plasmodium yoelii/imunologia , Doenças dos Roedores/prevenção & controle , Vacinas de DNA/imunologia , Animais , Antígenos de Protozoários/genética , Modelos Animais de Doenças , Feminino , Humanos , Vacinas Antimaláricas/genética , Camundongos , Plasmodium yoelii/genética , Plasmodium yoelii/patogenicidade , Vacinas de DNA/genética
15.
Malar J ; 9: 241, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20735847

RESUMO

BACKGROUND: Plasmodium falciparum apical membrane antigen-1 (AMA1) is a leading malaria vaccine candidate antigen that is expressed by sporozoite, liver and blood stage parasites. Since CD8+ T cell responses have been implicated in protection against pre-erythrocytic stage malaria, this study was designed to identify MHC class I-restricted epitopes within AMA1. METHODS: A recombinant adenovirus serotype 5 vector expressing P. falciparum AMA1 was highly immunogenic when administered to healthy, malaria-naive adult volunteers as determined by IFN-γ ELISpot responses to peptide pools containing overlapping 15-mer peptides spanning full-length AMA1. Computerized algorithms (NetMHC software) were used to predict minimal MHC-restricted 8-10-mer epitope sequences within AMA1 15-mer peptides active in ELISpot. A subset of epitopes was synthesized and tested for induction of CD8+ T cell IFN-γ responses by ELISpot depletion and ICS assays. A 3-dimensional model combining Domains I + II of P. falciparum AMA1 and Domain III of P. vivax AMA1 was used to map these epitopes. RESULTS: Fourteen 8-10-mer epitopes were predicted to bind to HLA supertypes A01 (3 epitopes), A02 (4 epitopes), B08 (2 epitopes) and B44 (5 epitopes). Nine of the 14 predicted epitopes were recognized in ELISpot or ELISpot and ICS assays by one or more volunteers. Depletion of T cell subsets confirmed that these epitopes were CD8+ T cell-dependent. A mixture of the 14 minimal epitopes was capable of recalling CD8+ T cell IFN-γ responses from PBMC of immunized volunteers. Thirteen of the 14 predicted epitopes were polymorphic and the majority localized to the more conserved front surface of the AMA1 model structure. CONCLUSIONS: This study predicted 14 and confirmed nine MHC class I-restricted CD8+ T cell epitopes on AMA1 recognized in the context of seven HLA alleles. These HLA alleles belong to four HLA supertypes that have a phenotypic frequency between 23% - 100% in different human populations.


Assuntos
Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Mapeamento de Epitopos , Epitopos de Linfócito T/imunologia , Proteínas de Membrana/imunologia , Proteínas de Protozoários/imunologia , Adenovírus Humanos/genética , Adulto , Vetores Genéticos , Experimentação Humana , Humanos , Interferon gama/metabolismo , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia
16.
Antimicrob Agents Chemother ; 48(7): 2455-63, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15215094

RESUMO

CEL-1000 (DGQEEKAGVVSTGLIGGG) is a novel potential preventative and therapeutic agent. We report that CEL-1000 confers a high degree of protection against Plasmodium sporozoite challenge in a murine model of malaria, as shown by the total absence of blood stage infection following challenge with 100 sporozoites (100% protection) and by a substantial reduction (400-fold) of liver stage parasite RNA following challenge with 50,000 sporozoites. CEL-1000 protection was demonstrated in A/J (H-2(a)) and C3H/HeJ (H-2(k)) mice but not in BALB/c (H-2(d)) or CAF1 (A/J x BALB/c F(1) hybrid) mice. In CEL-1000-treated and protected mice, high levels of gamma interferon (IFN-gamma) in serum and elevated frequencies of hepatic and splenic CD4+ IFN-gamma-positive T cells were detected 24 h after administration of an additional dose of CEL-1000. Treatment of A/J mice that received CEL-1000 with antibodies against IFN-gamma just prior to challenge abolished the protection, and a similar treatment with antibodies against CD4+ T cells partially reduced the level of protection, while treatment with control antibodies or antibodies specific for interleukin-12 (IL-12), CD8+ T cells, or NK cells had no effect. Our data establish that the protection induced by CEL-1000 is dependent on IFN-gamma and is partially dependent on CD4+ T cells but is independent of CD8+ T cells, NK cells, and IL-12 at the effector phase and does not induce a detectable antibody response.


Assuntos
Antígenos de Protozoários/imunologia , Antimaláricos/farmacologia , Genes MHC da Classe II/genética , Malária/prevenção & controle , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos , Citocinas/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Interferon gama/imunologia , Cinética , Fígado/química , Fígado/parasitologia , Malária/imunologia , Malária/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Plasmodium berghei/imunologia , Plasmodium yoelii/imunologia , RNA/química , RNA/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Vaccine ; 22(13-14): 1592-603, 2004 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-15068840

RESUMO

Optimal protection against malaria may require induction of high levels of protective antibody and CD8(+) and CD4(+) T cell responses. In humans, malaria DNA vaccines elicit CD8(+) cytotoxic T cells (CTL) and IFNgamma responses as measured by short-term (ex vivo) ELISPOT assays, and recombinant proteins elicit antibodies and excellent T cell responses, but no CD8(+) CTL or CD8(+) IFNgamma-producing cells as measured by ex vivo ELISPOT. Priming with DNA and boosting with recombinant pox virus elicits much better T cell responses than DNA alone, but not antibody responses. In an attempt to elicit antibodies and enhanced T cell responses, we administered RTS,S/AS02A, a partially protective Plasmodium falciparum recombinant circumsporozoite protein (CSP) vaccine in adjuvant, to volunteers previously immunized with a P. falciparum CSP DNA vaccine (VCL-2510) and to naïve volunteers. This vaccine regimen was well tolerated and safe. The volunteers who received RTS,S/AS02A alone had, as expected, antibody and CD4(+) T cell responses, but no CD8(+) T cell responses. Volunteers who received PfCSP DNA followed by RTS,S/AS02A had antibody and CD8(+) and CD4(+) T cell responses (Wang et al., submitted). Sequential immunization with DNA and recombinant protein, also called heterologous prime-boost, led to enhanced immune responses as compared to DNA or recombinant protein alone, suggesting that it might provide enhanced protective immunity.


Assuntos
Anticorpos Antiprotozoários/biossíntese , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/imunologia , Vacinas de DNA/imunologia , Adolescente , Adulto , Animais , Anticorpos Antiprotozoários/análise , Linfócitos B/imunologia , Feminino , Anticorpos Anti-Hepatite B/biossíntese , Antígenos de Superfície da Hepatite B/imunologia , Humanos , Esquemas de Imunização , Vacinas Antimaláricas/efeitos adversos , Masculino , Esporos de Protozoários/imunologia , Linfócitos T/imunologia , Vacinas de DNA/efeitos adversos , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/imunologia
18.
Infect Immun ; 72(3): 1594-602, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14977966

RESUMO

We describe a novel approach for identifying target antigens for preerythrocytic malaria vaccines. Our strategy is to rapidly test hundreds of DNA vaccines encoding exons from the Plasmodium yoelii yoelii genomic sequence. In this antigen identification method, we measure reduction in parasite burden in the liver after sporozoite challenge in mice. Orthologs of protective P. y. yoelii genes can then be identified in the genomic databases of Plasmodium falciparum and Plasmodium vivax and investigated as candidate antigens for a human vaccine. A pilot study to develop the antigen identification method approach used 192 P. y. yoelii exons from genes expressed during the sporozoite stage of the life cycle. A total of 182 (94%) exons were successfully cloned into a DNA immunization vector with the Gateway cloning technology. To assess immunization strategies, mice were vaccinated with 19 of the new DNA plasmids in addition to the well-characterized protective plasmid encoding P. y. yoelii circumsporozoite protein. Single plasmid immunization by gene gun identified a novel vaccine target antigen which decreased liver parasite burden by 95% and which has orthologs in P. vivax and P. knowlesi but not P. falciparum. Intramuscular injection of DNA plasmids produced a different pattern of protective responses from those seen with gene gun immunization. Intramuscular immunization with plasmid pools could reduce liver parasite burden in mice despite the fact that none of the plasmids was protective when given individually. We conclude that high-throughput cloning of exons into DNA vaccines and their screening is feasible and can rapidly identify new malaria vaccine candidate antigens.


Assuntos
Antígenos de Protozoários/genética , Vacinas Antimaláricas/genética , Plasmodium yoelii/genética , Plasmodium yoelii/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Sequência de Bases , Biolística , Clonagem Molecular , Primers do DNA , DNA de Protozoário/genética , Éxons , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Genoma de Protozoário , Humanos , Injeções Intramusculares , Fígado/parasitologia , Malária/imunologia , Malária/parasitologia , Malária/prevenção & controle , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos/genética , Plasmodium yoelii/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de DNA/farmacologia
19.
Hum Gene Ther ; 13(13): 1551-60, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12228010

RESUMO

Introduction of a new vaccine requires choosing a delivery system that provides safe administration and the desired level of immunogenicity. The safety, tolerability, and immunogenicity of three monthly 2.5-mg doses of a PfCSP DNA vaccine were evaluated in healthy volunteers as administered intramuscularly (IM) by needle, IM by jet injection (Biojector or IM/intradermally (ID) by jet injection. Vaccine administration was well-tolerated. Adverse events were primarily mild and limited to the site of injection (98%). Jet injections (either IM or ID) were associated with approximately twice as many adverse events per immunization as needle IM, but nevertheless were strongly and consistently preferred in opinion polls taken during the study. No volunteers had clinically significant biochemical or hematologic changes or detectable anti-dsDNA antibodies. In conclusion, the injection of Plasmodium falciparum circumsporozoite (PfCSP) DNA vaccine appeared to be safe and well-tolerated when administered by any of the three modes of delivery. However, despite improved antibody responses following both jet injection and ID delivery in animal models, no antibodies could be detected in volunteers by immunofluorescence antibody test (IFAT) or enzyme-linked immunosorbent assay (ELISA) after DNA vaccination.


Assuntos
Malária/prevenção & controle , Vacinas de DNA/administração & dosagem , Animais , Humanos , Injeções Intradérmicas , Injeções Intramusculares , Malária/imunologia , Plasmodium falciparum/imunologia , Vacinas de DNA/efeitos adversos , Vacinas de DNA/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA