RESUMO
Human lice are the only hematophagous ectoparasites specific to human hosts. They transmit epidemic typhus, trench fever and relapsing fever, diseases which have already caused millions of deaths worldwide. In order to further investigate lice vectorial capacities, laboratory-controlled live lice colonies are essential. Previously developed lice-rearing methods significantly advanced research on louse-borne diseases and louse biology. In this study, we aimed to develop a rearing technique for the Orlando (Or) strain of body lice on an artificial membrane. We tested two systems, namely the Hemotek feeding system and a Petri dish with the lice being fed through a Parafilm membrane. Lice longevity and development were drastically affected by the blood anticoagulant. Additionally, heparinised human blood on a Petri dish was the best candidate when compared to the control group (reared on a rabbit). Therefore, this strategy was applied to 500 lice. Development into adulthood was recorded after 21 days (17 days for the rabbits), and 52 eggs were deposited (240 for the rabbits). In this study, we were able to maintain one generation of body lice on an artificial membrane with comparable feeding and longevity rates to those fed on live rabbits. However, lice fecundity decreased on the artificial membrane. In vitro lice-rearing experiments will enable pathogen infection assays and pesticide bioassays to be carried out in accordance with animal welfare requirements.
RESUMO
The strains Marseille-Q7072T (= CSUR Q7072T = CECT 30604 T) and Marseille-Q7826T (= CSUR Q7826T = CECT 30727 T) were isolated from vaginal samples. As MALDI-TOF mass spectrometry failed to identify them, their genomes were directly sequenced to determine their taxogenomic identities. Both strains are anaerobic without any oxidase and catalase activity. C16:0 is the most abundant fatty acid for both strains. Strain Marseille-Q7072T is non-spore-forming, non-motile, Gram-stain-positive, and coccus-shaped, while strain Marseille-Q7826T is non-spore-forming, motile, Gram-stain-variable, and curved rod-shaped. The genomic comparison of the Marseille-Q7072T and Marseille-Q7826T strains showed that all digital DNA-DNA hybridisation (dDDH) and mean orthologous nucleotide identity (OrthoANI) values were below published species thresholds (70% and 95-96%, respectively) with other closely related species with standing in nomenclature. Thus, we conclude that both strains are new bacterial species. Strain Marseille-Q7072T is a new member of the Bacillota phylum, for which the name Peptoniphilus genitalis sp. nov. is proposed, while the Marseille-Q7826T strain is a new member of the Actinomycetota phylum, for which the name Mobiluncus massiliensis sp. nov. is proposed.
Assuntos
Microbiota , Mobiluncus , Feminino , Humanos , Bactérias , Clostridiales , DNARESUMO
Bacterial vaginosis (BV) is a common dysbiosis of unclear etiology but with potential consequences representing a public health problem. The diagnostic strategies vary widely. The Amsel criteria and Nugent score have obvious limitations, while molecular biology techniques are expensive and not yet widespread. We set out to evaluate different diagnostic strategies from vaginal samples using (1) a combination of abnormal vaginal discharge and vaginal pH > 4.5; (2) the Amsel-like criteria (replacing the "whiff test" with "malodorous discharge"); (3) the Nugent score; (4) the molecular quantification of Fannyhessea vaginae and Gardnerella vaginalis (qPCR); (5) and MALDI-TOF mass spectrometry (we also refer to it as "VAGI-TOF"). Overall, 54/129 patients (42%) were diagnosed with BV using the combination of vaginal discharge and pH, 46/118 (39%) using the Amsel-like criteria, 31/130 (24%) using qPCR, 32/130 (25%) using "VAGI-TOF", and 23/84 (27%) using the Nugent score (not including the 26 (31%) with intermediate flora). Of the 84 women for whom the five diagnostic strategies were performed, the diagnosis of BV was considered for 38% using the combination of vaginal discharge and pH, 34.5% using the Amsel-like criteria, 27% using the Nugent score, 25% using qPCR, and 25% using "VAGI-TOF". When qPCR was considered as the reference, the sensitivity rate for BV was 76.2% for the combination of vaginal discharge and pH, 90.5% for the Amsel-like criteria, 95.2% for the Nugent score, and 90.5% for "VAGI-TOF", while the specificity rates were 74.6%, 84.1%, 95.3%, and 95.3%, respectively. When the Nugent score was considered as the reference, the sensitivity for BV was 69.6% for the combination of vaginal discharge and pH, 82.6% for the Amsel-like criteria, 87% for qPCR, and 78.7% for "VAGI-TOF", while the specificity rates were 80%, 94.3%, 100%, and 97.1%, respectively. Overall, the use of qPCR and "VAGI-TOF" provided a consistent diagnosis of BV, followed by the Nugent score. If qPCR seems tedious and for some costly, "VAGI-TOF" could be an inexpensive, practical, and less time-consuming alternative.
RESUMO
The composition of the vaginal microbiota is known to be influenced by various factors and to be associated with several disorders affecting women's health. Although metagenomics is currently a widely used method for studying the human microbiota, it has certain limitations, such as a lack of information on bacterial viability. It is therefore important to use culture-based methods such as culturomics. Here, we used 35 different culture conditions to comprehensively characterize the vaginal bacterial diversity of a single woman's flora. A total of 206 bacterial species, belonging to six phyla (for a little more than half to Firmicutes, followed mainly by Actinobacteria, Bacteroidetes, and Proteobacteria) and 45 families, and 2 fungal species were cultivated. While several species of lactobacilli have been isolated, a wide variety of other bacteria were also separated, including 65 never reported before in vaginal flora, including a new bacterial species, Porphyromonas vaginalis sp. nov. Extensive culture-based methods are essential to establish a comprehensive, evidence-based repertoire of bacterial viability. If combined with molecular methods, they can provide a much more thorough understanding of the vaginal microbiota and fulfil the unknown part of metagenomic studies.
Assuntos
Bactérias , Microbiota , Humanos , Feminino , Bactérias/genética , Microbiota/genética , Firmicutes/genética , Vagina/microbiologia , BacteroidetesRESUMO
An isolate of a bacterium recovered from an endometrial biopsy failed to be identified by MALDI-TOF mass spectrometry and was subjected to 16S rRNA sequencing. The obtained sequence was compared by BLASTn against the NCBI database, which revealed that the most closely related species was Cellulomonas hominis and Cellulomonas pakistanensis, with 98.85% and 98.45% identity, respectively. Phenotypic characterisation and genome sequencing were performed. The isolate was facultative anaerobic, gram-positive, motile, non-spore forming, and rod-shaped. Cell wall fatty acid profiling revealed that 12-methyl-tetradecanoic acid was the most abundant fatty acid (36%). The genome size was 4.25 Mbp with a G + C content of 74.8 mol%. Genomic comparison of species closely related to this strain showed that all digital DNA-DNA hybridisation (dDDH) and mean orthologous nucleotide identity (OrthoANI) values were below published species thresholds (70% and 95-96%, respectively). Based on these data, we conclude that this isolate represents a new bacterial species belonging to the family Cellulomonadaceae and the phylum Actinomycetota. We propose the name Cellulomonas endometrii sp. nov. The type strain is Marseille-Q7820T (= CSUR Q7820 = CECT 30716).
Assuntos
Cellulomonas , Cellulomonas/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Filogenia , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/análiseRESUMO
Sexually transmitted infections (STIs) are a serious global problem, causing disease, suffering, and death. Although bacterial vaginosis (BV) is not considered to be an STI, it may be associated with an increased risk of contracting a wide range of STIs. We sought to assess the link between the different microorganisms involved in STIs and BV. A total of 290 vaginal swabs from 290 women sent for diagnostic purposes to the clinical microbiology laboratory of the Marseille University Public Hospitals were tested by specific qPCR targeting STI-causing microorganisms and BV. Of these 290 swabs, 15.2% (44/290) were diagnosed with at least one STI-causing microorganism and 17.2% (50/290) with BV. The prevalence of STIs was significantly higher in women with BV (28%, 14/50) than in those without (20.4%, 51/240). The prevalence of co-infections involving two STI-causing microorganisms was significantly more frequent in women with BV than in those without (18% [8/50] vs. 2% [5/250]; p < 0.001). The prevalence of monoinfections and polyinfections with STI-causing microorganisms was lower in women without BV than in those with (8.8% [21/240] vs. 28% [14/50]), p < 0.001 and 2% (5/240) vs. 8% (4/50), p = 0.05, respectively). Our data suggest that a correlation between BV and STI may exist, with a higher prevalence of both monoinfections and polyinfections involving STI-causing microorganisms in women with BV. Further research is needed to better understand BV and its links to STIs.
RESUMO
Introduction: Candidate Phyla Radiation (CPR) and more specifically Candidatus Saccharibacteria (TM7) have now been established as ubiquitous members of the human oral microbiota. Additionally, CPR have been reported in the gastrointestinal and urogenital tracts. However, the exploration of new human niches has been limited to date. Methods: In this study, we performed a prospective and retrospective screening of TM7 in human samples using standard PCR, real-time PCR, scanning electron microscopy (SEM) and shotgun metagenomics. Results: Using Real-time PCR and standard PCR, oral samples presented the highest TM7 prevalence followed by fecal samples, breast milk samples, vaginal samples and urine samples. Surprisingly, TM7 were also detected in infectious samples, namely cardiac valves and blood cultures at a low prevalence (under 3%). Moreover, we observed CPR-like structures using SEM in all sample types except cardiac valves. The reconstruction of TM7 genomes in oral and fecal samples from shotgun metagenomics reads further confirmed their high prevalence in some samples. Conclusion: This study confirmed, through their detection in multiple human samples, that TM7 are human commensals that can also be found in clinical settings. Their detection in clinical samples warrants further studies to explore their role in a pathological setting.
Assuntos
Bactérias , Microbiota , Feminino , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Bactérias/genética , Reação em Cadeia da Polimerase em Tempo RealRESUMO
A Gram-positive, aerobic, motile, endospore-forming, rod-shaped bacterium was isolated from a stool sample of a child with marasmus. The 16S rRNA gene showed that strain Marseille-P3601T exhibited 98.68% sequence identity with Ornithinibacillus scapharcae strain TW25. The genomic DNA G+C contents of this strain was 36.9 mol%. The fatty acid profiles of the strain were iso/anteiso branched structures. The highest DDH value was 20.6%, shared with O. californiensis, amongst its closest strain phylogenetically. Based on the phylogenetic position and the genomic, morphological, and biochemical properties, strain Marseille-P3601T (=CSUR P3601=CCUG 71291) represents a novel species in the genus Ornithinibacillus, for which the name Ornithinibacillus massiliensis sp. nov. is proposed.
Assuntos
Desnutrição Proteico-Calórica , Bacillaceae , Técnicas de Tipagem Bacteriana , Criança , DNA Bacteriano/química , DNA Bacteriano/genética , Ácidos Graxos/química , Humanos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
Strains Marseille-Q5893 (= CSUR Q5893 = CECT 30496) and Marseille-Q5883 (= CSUR Q5883 = CECT 30497) were isolated from vaginal samples using the culturomics approach. The 16S rRNA gene sequences of each strain were sequenced and then compared by BLASTn to the NCBI database. Strains Marseille-Q5893 and Marseille-Q5883 were most closely related to Anaerococcus obesiensis and Finegoldia magna, with identities of 98.5% and 90.0%, respectively. Strain Marseille-Q5893 is strictly anaerobic, while strain Marseille-Q5883 is facultative anaerobic. Both strains are Gram-positive, coccus-shaped, oxidase- and catalase-negative. The most abundant fatty acid for both strains is hexadecanoic acid, followed by 9-octadecenoic acid and tetradecanoic acid. Strain Marseille-Q5893 has a genome size of 1,831,271 bp with a G+C content of 29.4 mol%, whereas strain Marseille-Q5883 has a genome of 1,997,945 bp with a 33.6 mol% G+C content. The genomic comparison of closely related species with strains Marseille-Q5893 and Marseille-Q5883 showed that all digital DNA-DNA hybridization (dDDH) and orthologous average nucleotide identity (OrthoANI) values were lower than the published species thresholds (70% and 95-96%, respectively). Based on these data, we conclude that strain Marseille-Q5893 belongs to a new species in the family Peptoniphilaceae and strain Marseille-Q5883 belongs to a new genus in the family Peptostreptococcaceae. For these two new bacterial species, the names Anaerococcus ihuae sp. nov. and Mediannikoviicoccus vaginalis gen. nov., sp. nov., were proposed.
Assuntos
Clostridiales , Ácidos Graxos , Composição de Bases , Clostridiales/genética , DNA Bacteriano/genética , Feminino , Humanos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
Around the world, more than 175,000,000 women are diagnosed every year with gynaecological disease, in many cases contributing to high morbidity and mortality. For this reason, knowledge of the composition of the vaginal microbiome and its variations represents a real health challenge, as this is key to improving therapeutic management. This review traces the history of the poorly known vaginal microbiome and focuses on the latest findings concerning this ecosystem. Studies in the past decade have targeted complex bacterial communities within the vagina. However, due to the development of technology and the emergence of next generation sequencing (NGS), the exact definition of the vaginal microbiome has changed and can no longer be linked solely to the presence of bacteria. In order to reach a global view of the vaginal microbiome, it is essential to take into account all microorganisms that the vagina harbours, including fungi, viruses, archaea, and candidate phyla radiation. Although these communities represent only a minimal percentage of the vaginal microbiome, they may act as modifiers of its basic physiology and may play a key role in the maintenance of microbial communities, as well as metabolic and immune functions. Studies of the complex interactions between these different microorganisms have recently begun and are not yet fully understood. Results to date indicate that these microbial communities together constitute the first line of defence against infections. On the other hand, the slightest disturbance in this microbiome may lead to disease. For this reason, enhanced knowledge of these associations is critical to better identify predispositions to certain illnesses, which may open new therapeutic avenues. Currently however, only the tip of the iceberg is understood and current research on this ecosystem is revolutionising our knowledge and understanding of human health and disease.
Assuntos
Microbiota , Bactérias/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , VaginaRESUMO
The vaginal microbiome is a well-defined compartment of the human microbiome. It has unique conditions, characterized by the dominance of one bacterial species, the Lactobacilli. This microbiota manifests itself by a low degree of diversity and by a strong dynamic of change in its composition under the influence of various exogenous and endogenous factors. The increase in diversity may paradoxically be associated with dysbiosis, such as bacterial vaginosis (BV). BV is the result of a disturbance in the vaginal ecosystem; i.e., a sudden replacement of Lactobacilli by anaerobic bacteria such as Gardnerella vaginalis, Atopobium vaginae, Ureaplasma urealyticum, Mycoplasma hominis, and others. It is the most common cause of vaginal discharge in women of childbearing age, approximately 30% of all causes. The etiology of this dysbiosis remains unknown, but its health consequences are significant, including obstetrical complications, increased risk of sexually transmitted infections and urogenital infections. Its diagnosis is based on Amsel's clinical criteria and/or a gram stain based on the Nugent score. While both of these methods have been widely applied worldwide for approximately three decades, Nugent score are still considered the "gold standard" of BV diagnostic tools. Given the limitations of these tools, methods based on molecular biology have been developed as alternative rational strategies for the diagnosis of BV. The treatment of BV aims at restoring the balance of the vaginal flora to stop the proliferation of harmful microorganisms. Prescription of antibiotics such as metronidazole, clindamycin, etc. is recommended. Faced with the considerable uncertainty about the cause of BV, the high rate of recurrence, the unacceptable treatment options, and clinical management which is often insensitive and inconsistent, research on this topic is intensifying. Knowledge of its composition and its associated variations represents the key element in improving the therapeutic management of patients with the most suitable treatments possible.