Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 145: 107258, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447463

RESUMO

FimH is a mannose-recognizing lectin that is expressed by Escherichia coli guiding its ability to adhere and infect cells. It is involved in pathogenesis of urinary tract infections and Chron's disease. Several X-ray structure-guided ligand design studies were extensively utilized in the discovery and optimization of small molecule aryl mannoside FimH antagonists. These antagonists retain key specific interactions of the mannose scaffolds with the FimH carbohydrate recognition domains. Thiomannosides are attractive and stable scaffolds, and this work reports the synthesis of some of their new aryl and heteroaryl derivatives as FimH antagonists. FimH-competitive binding assays as well as biofilm inhibition of the new compounds (24-32) were determined in comparison with the reference n-heptyl α-d-mannopyranoside (HM). The affinity among these compounds was found to be governed by the structure of the aryl and heteroarylf aglycones. Two compounds 31 and 32 revealed higher activity than HM. Molecular docking and total hydrophobic to topological polar surface area ratio calculations attributed to explain the obtained biological results. Finally, the SAR study suggested that introducing an aryl or heteroaryl aglycone of sufficient hydrophobicity and of proper orientation within the tyrosine binding site considerably enhance binding affinity. The potent and synthetically feasible FimH antagonists described herein hold potential as leads for the development of sensors for detection of E. coli and treatment of its diseases.


Assuntos
Escherichia coli , Infecções Urinárias , Humanos , Escherichia coli/metabolismo , Proteínas de Fímbrias , Manose/química , Simulação de Acoplamento Molecular
2.
Arch Pharm (Weinheim) ; 356(10): e2300315, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37551741

RESUMO

New 5-aminosalicylamide-4-thiazolinone hybrids (27) were efficiently synthesized, characterized, and evaluated to explore their structure-activity relationship as anticancer agents. The antiproliferative activities of the new hybrids were evaluated against eight cancer cell lines using the sulforhodamine B assay. The most potent compound (24b) possessed high selectivity on the tested cell lines in the low micromolar range, with much lower effects on normal fibroblast cells (IC50 > 50 µM). The cell lines derived from leukemia (Jurkat), cervix (HeLa), and colon (HCT116) cancers appeared to be the most sensitive, with IC50 of 2 µM. 24b is the N-ethylamide derivative with p-dimethylaminobenzylidene at position 5 of the 4-thiazolinone moiety. Other N-substituents or arylidene derivatives showed lower activity. Hybrids with salicylamides showed lower activity than with methyl salicylate. The results clearly show that the modifications of the carboxy group and arylidene moiety greatly affect the activity. Investigating the possible molecular mechanisms of these hybrids revealed that they act through cell-cycle arrest and induction of apoptosis and epidermal growth factor receptor (EGFR) inhibition. Molecular docking studies rationalize the molecular interactions of 24b with EGFR. This work expands our knowledge of the structural requirements to improve the anticancer activity of 5-aminosalicylic-thiazolinone hybrids and pave the way toward multitarget anticancer salicylates.


Assuntos
Antineoplásicos , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Receptores ErbB , Células HeLa , Estrutura Molecular , Linhagem Celular Tumoral
3.
Molecules ; 28(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570665

RESUMO

Lidocaine, a local anesthetic, is known to possess anti-inflammatory properties. However, its clinical use is limited by inconveniences, such as its local synesthetic effects. This study evaluated lidocaine analogs designed and synthesized to overcome the disadvantages of lidocaine, having anti-inflammatory properties. Interleukin 5 (IL-5)-induced eosinophil activation and survival were evaluated using 36 lidocaine analogs with modified lidocaine structure on the aromatic or the acyl moiety or both. Eosinophil survival was evaluated using a CellTiter 96® aqueous cell proliferation assay kit. Superoxide production was determined using the superoxide dismutase-inhibitable reduction of cytochrome C method. Eosinophil cationic protein (ECP), IL-8, and transcription factor expression were determined using enzyme-linked immunosorbent assay. The platelet-activating factor (PAF)-induced migration assay was performed using a Transwell insert system. Compounds EI137 and EI341 inhibited IL-5-induced eosinophil survival and superoxide and ECP production in a concentration-dependent manner. These compounds also significantly reduced IL-8 production. Although compounds EI137 and EI341 significantly reduced phosphorylated ERK 1/2 expression, they did not influence other total and phosphorylated transcription factors. Moreover, 1000 µM of compound EI341 only inhibited PAF-induced migration of eosinophils. Lidocaine analogs EI137 and EI341 inhibited IL-5-mediated activation and survival of eosinophils. These compounds could be new therapeutic agents to treat eosinophilic inflammatory diseases.


Assuntos
Eosinófilos , Superóxidos , Superóxidos/metabolismo , Lidocaína/farmacologia , Interleucina-5/metabolismo , Interleucina-5/farmacologia , Interleucina-8/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo
4.
Bioorg Chem ; 116: 105363, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34555629

RESUMO

We have discovered a family of synthetic oxazole-based macrocycles to be active against SARS-CoV-2. The synthesis, pharmacological properties, and docking studies of the compounds are reported in this study. The structure of the new macrocycles was confirmed by NMR spectroscopy and mass spectrometry. Compounds 13, 14, and 15a-c were evaluated for their anti-SARS-CoV-2 activity on SARS-COV-2 (NRC-03-nhCoV) virus in Vero-E6 cells. Isopropyl triester 13 and triacid 14 demonstrated superior inhibitory activities against SARS-CoV-2 compared to carboxamides 15a-c. MTT cytotoxicity assays showed that the CC50 (50% cytotoxicity concentration) of 13, 14, and 15a-c ranged from 159.1 to 741.8 µM and their safety indices ranged from 2.50 to 39.1. Study of the viral inhibition via different mechanisms of action (viral adsorption, replication, or virucidal property) showed that 14 had mild virucidal (60%) and inhibitory effects on virus adsorption (66%) at 20 µM concentrations. Compound 13 displayed several inhibitory effects at three levels, but the potency of its action is primarily virucidal. The inhibitory activity of compounds 13, 14, and 15a-c against the enzyme SARS-CoV-2 Mpro was evaluated. Isopropyl triester 13 had a significant inhibition activity against SARS-CoV-2 Mpro with an IC50 of 2.58 µM. Large substituents on the macrocyclic template significantly reduced the inhibitory effects of the compounds. Study of the docking of the compounds in the SARS CoV-2-Mpro active site showed that the most potent macrocycles 13 and 14 exhibited the best fit and highest affinity for the active site binding pocket. Taken together, the present study shows that the new macrocyclic compounds constitute a new family of SARS CoV-2-Mpro inhibitors that are worth being further optimized and developed.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Descoberta de Drogas , Compostos Macrocíclicos/farmacologia , Oxazóis/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Proteases 3C de Coronavírus/metabolismo , Humanos , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Oxazóis/síntese química , Oxazóis/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , SARS-CoV-2/enzimologia
5.
Bioorg Chem ; 104: 104260, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32920363

RESUMO

Recent studies have shown additive and synergistic effects associated with the combination of kinase inhibitors. BRAFV600E and EGFR are attractive targets for many diseases treatments and have been studied extensively. In keeping with our interest in developing anticancer targeting EGFR and BRAFV600E, a novel series of 2,3-dihydropyrazino[1,2-a]indole-1,4-dione has been rationally designed, synthesized and evaluated for their antiproliferative activity against a panel of four human cancer cell lines. Compounds 20-23, 28-31, and 33 showed promising antiproliferative activities. These compounds were further tested for their inhibitory potencies against EGFR and BRAFV600E kinases with erlotinib as a reference drug. Compounds 23 and 33 exhibited equipotency to doxorubicin against the four cell lines and efficiently inhibited both EGFR (IC50 = 0.08 and 0.09 µM, respectively) and BRAFV600E (IC50 = 0.1 and 0.29 µM, respectively). In cell cycle study of MCF-7 cell line, compounds 23 and 33 induced apoptosis and exhibited cell cycle arrest in both Pre-G1 and G2/M phases. Molecular docking analyses revealed that the new compounds can fit snugly into the active sites of EGFR, and BRAFV600E kinases. Compound 23, 31 and 33 adopted similar binding orientations and interactions to those of erlotinib and vemurafenib.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Pirazinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Indóis/síntese química , Indóis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Pirazinas/síntese química , Pirazinas/química , Relação Estrutura-Atividade
6.
Int J Pharm ; 567: 118472, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31252146

RESUMO

Candida albicans, as the main causative fungus of vaginal candidiasis, is currently a global issue of concern due to its high prevalence, biofilm formation and emergence of resistance. Ketoconazole (KTZ), an antifungal drug, which has poor water-solubility and penetration capacity, is ineffective against deep-seated Candida infection. Considering these issues, this work aimed to develop a novel multifunctional carrier for KTZ via encapsulation of KTZ/ß-cyclodextrin (ß-CD) co-ground mixture into chitosan/gellan gum gel-flakes (threadlike and polygonal structures). Analytical studies revealed existence of electrostatic-derived complexes between negatively charged gellan gum and positively charged chitosan. Gel-flakes were then loaded in in situ gel of pluronic F-127 (PF-127). Based on gelation temperature (Tgel), viscosity and release studies; selected formulation was further evaluated, showing significant in vitro anti-candida activity. Despite reduced dosage regimen (50 mg/daily/three days), KTZ flakes in situ gel was as effective as Gynoconazol vaginal cream® (80 mg terconazole/daily/three days) in improving patient complaints and Candida eradication. Multifunctionality of KTZ carrier was based on efficient spreading and coating of the vagina due to free-flowing properties during application, flakes entanglement within folded vaginal epithelia, sustained release and increased penetration capacity of KTZ to reach deep-seated infections. In conclusion, flakes in situ gel could be considered as a highly promising KTZ delivery option for treatment of vaginal candidiasis.


Assuntos
Antifúngicos/administração & dosagem , Candida albicans/efeitos dos fármacos , Candidíase Vulvovaginal/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Cetoconazol/administração & dosagem , Adulto , Antifúngicos/química , Candida albicans/crescimento & desenvolvimento , Quitosana/administração & dosagem , Quitosana/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Feminino , Géis , Humanos , Cetoconazol/química , Pessoa de Meia-Idade , Polissacarídeos Bacterianos/administração & dosagem , Polissacarídeos Bacterianos/química , Reologia , Adulto Jovem
7.
Eur J Med Chem ; 177: 1-11, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31128433

RESUMO

Cannabinoids as THC and the CB1 allosteric modulator CBD were reported to have antiproliferative activities with no reports for other CB1 allosteric modulators as the 5-chloroindole-2-carboxamide derivatives and their furan congeners. Based on the antiproliferative activity of two 5-chlorobenzofuran-2-carboxamide allosteric CB1 modulators, a series of novel derivatives was designed and synthesized. The synthesized compounds were tested in a cell viability assay using human mammary gland epithelial cell line (MCF-10A) where all the compounds exhibited no cytotoxic effects and more than 85% cell viability at a concentration of 50 µM. Some derivatives showed good antiproliferative activities against tumor cells as compounds 8, 15, 21 and 22. The most active compound 15 showed equipotent activity to doxorubicin. Compounds 7, 9, 15, 16, 21 and 22 increased the level of active caspase 3 by 4-8 folds, compared to the control cells in MCF-7 cell line and doxorubicin as a reference drug. Compounds 15 and 21, the most activecaspase-3 inducers, increase the levels of caspase 8 and 9 indicating activation of both intrinsic and extrinsic pathways and showed potent induction of Bax, down-regulation of Bcl-2 protein levels and over-expression of Cytochrome C levels in MCF-7 cell lines. Compound 15 exhibited cell cycle arrest at the Pre-G1 and G2/M phases in the cell cycle analysis of MCF-7 cell line. The drug Likeness profile of the synthesized compounds showed that all the compounds were predicted to have high oral absorption complying with different pharmacokinetics filters.


Assuntos
Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Benzofuranos/síntese química , Benzofuranos/química , Benzofuranos/farmacocinética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Estrutura Molecular , Receptor CB1 de Canabinoide , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA