Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Chemosphere ; 355: 141765, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531497

RESUMO

Due to the increasing evidence of widespread sub-micron pollutants in the atmosphere, the impact of airborne nanoparticles is a subject of great relevance. In particular, the smallest particles are considered the most active and dangerous, having a higher surface/volume ratio. Here we tested the effect of iron oxide (Fe3O4) nanoparticles (IONPs) with different mean diameter and size distribution on the model plant Tillandsia usneoides. Strands were placed in home-built closed boxes and exposed to levels of airborne IONPs reported for the roadside air, i.e. in the order of 107 - 108 items m-2. Plant growth and other morpho-physiological parameters were monitored for two weeks, showing that exposure to IONPs significantly reduced the length increment of the treated strands with respect to controls. A dose-dependence of this impairing effect was found only for particles with mean size of a few tens of nanometers. These were also proved to be the most toxic at the highest concentration tested. The IONP-induced hamper in growth was correlated with altered concentration of macro- and micronutrients in the plant, while no significant variation in photosynthetic activity was detected in treated samples. Microscopy investigation showed that IONPs could adhere to the plant surface and were preferentially located on the trichome wings. Our results report, for the first time, evidence of the negative effects of airborne IONP pollution on plant health, thus raising concerns about related environmental risks. Future research should be devoted to other plant species and pollutants to assess the impact of airborne pollution on plants and devise suitable attenuation practices.


Assuntos
Poluentes Atmosféricos , Tillandsia , Animais , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poluição Ambiental , Nanopartículas Magnéticas de Óxido de Ferro
2.
Lab Chip ; 24(7): 2017-2024, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407354

RESUMO

Effective prevention of recurrent kidney stone disease requires the understanding of the mechanisms of its formation. Numerous in vivo observations have demonstrated that a large number of pathological calcium oxalate kidney stones develop on an apatitic calcium phosphate deposit, known as Randall's plaque. In an attempt to understand the role of the inorganic hydroxyapatite phase in the formation and habits of calcium oxalates, we confined their growth under dynamic physicochemical and flow conditions in a reversible microfluidic channel coated with hydroxyapatite. Using multi-scale characterization techniques including scanning electron and Raman microscopy, we showed the successful formation of carbonated hydroxyapatite as found in Randall's plaque. This was possible due to a new two-step flow seed-mediated growth strategy which allowed us to coat the channel with carbonated hydroxyapatite. Precipitation of calcium oxalates under laminar flow from supersaturated solutions of oxalate and calcium ions showed that the formation of crystals is a substrate and time dependent complex process where diffusion of oxalate ions to the surface of carbonated hydroxyapatite and the solubility of the latter are among the most important steps for the formation of calcium oxalate crystals. Indeed when an oxalate solution was flushed for 24 h, dissolution of the apatite layer and formation of calcium carbonate calcite crystals occurred which seems to promote calcium oxalate crystal formation. Such a growth route has never been observed in vivo in the context of kidney stones. Under our experimental conditions, our results do not show any direct promoting role of carbonated hydroxyapatite in the formation of calcium oxalate crystals, consolidating therefore the important role that macromolecules can play in the process of nucleation and growth of calcium oxalate crystals on Randall's plaque.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Humanos , Medula Renal/patologia , Cristalização , Cálcio , Microfluídica , Cálculos Renais/química , Cálculos Renais/patologia , Apatitas , Oxalatos , Íons , Hidroxiapatitas
3.
Nanoscale Adv ; 6(1): 126-135, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38125604

RESUMO

Magnetic nanoparticles have been extensively explored as theranostic agents both in academic and clinical settings. Their self-assembly into nanohybrids using block copolymers can lead to new nanostructures with high functionalities and performances. Herein, we demonstrate a high-throughput and scalable method to elaborate magnetic micelles by the assembly of iron oxide magnetite nanoflowers, an efficient nanoheater, and the block copolymer Poly(styrene)-block-poly(acrylic acid) via a microfluidic-assisted nanoprecipitation method. We show that the size and shape of the magnetomicelles can be easily tuned by modulating the residence time in the microfluidic channel. In addition to their biocompatibility, we demonstrate the potential of these magnetic nanohybrids as multimodal theranostic platforms capable of generating heat by photothermia and functioning as negative contrast agents in magnetic resonance imaging and as imaging tracers in magnetic particle imaging. Notably, they outperform currently commercially available particles in terms of imaging functionalities.

4.
Mater Horiz ; 10(11): 4757-4775, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37740347

RESUMO

With their distinctive physicochemical features, nanoparticles have gained recognition as effective multifunctional tools for biomedical applications, with designs and compositions tailored for specific uses. Notably, magnetic nanoparticles stand out as first-in-class examples of multiple modalities provided by the iron-based composition. They have long been exploited as contrast agents for magnetic resonance imaging (MRI) or as anti-cancer agents generating therapeutic hyperthermia through high-frequency magnetic field application, known as magnetic hyperthermia (MHT). This review focuses on two more recent applications in oncology using iron-based nanomaterials: photothermal therapy (PTT) and ferroptosis. In PTT, the iron oxide core responds to a near-infrared (NIR) excitation and generates heat in its surrounding area, rivaling the efficiency of plasmonic gold-standard nanoparticles. This opens up the possibility of a dual MHT + PTT approach using a single nanomaterial. Moreover, the iron composition of magnetic nanoparticles can be harnessed as a chemotherapeutic asset. Degradation in the intracellular environment triggers the release of iron ions, which can stimulate the production of reactive oxygen species (ROS) and induce cancer cell death through ferroptosis. Consequently, this review emphasizes these emerging physical and chemical approaches for anti-cancer therapy facilitated by magnetic nanoparticles, combining all-in-one functionalities.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Fotoquimioterapia , Fototerapia/métodos , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/química , Fotoquimioterapia/métodos , Ferro
5.
Pharmaceutics ; 14(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35057074

RESUMO

Nanoparticles (NPs) are at the leading edge of nanomedicine, and determining their biosafety remains a mandatory precondition for biomedical applications. Herein, we explore the bioassimilation of copper sulfide NPs reported as powerful photo-responsive anticancer therapeutic agents. The nanoparticles investigated present a hollow shell morphology, that can be left empty (CuS NPs) or be filled with an iron oxide flower-like core (iron oxide@CuS NPs), and are compared with the iron oxide nanoparticles only (iron oxide NPs). CuS, iron oxide@CuS and iron oxide NPs were injected in 6-week-old mice, at doses coherent with an antitumoral treatment. Cu and Fe were quantified in the liver, spleen, kidneys, and lungs over 6 months, including the control animals, thus providing endogenous Cu and Fe levels in the first months after animal birth. After intravenous NPs administration, 77.0 ± 3.9% of the mass of Cu injected, and 78.6 ± 3.8% of the mass of Fe, were detected in the liver. In the spleen, we found 3.3 ± 0.6% of the injected Cu and 3.8 ± 0.6% for the Fe. No negative impact was observed on organ weight, nor on Cu or Fe homeostasis in the long term. The mass of the two metals returned to the control values within three months, a result that was confirmed by transmission electron microscopy and histology images. This bioassimilation with no negative impact comforts the possible translation of these nanomaterials into clinical practice.

6.
ACS Nano ; 16(1): 271-284, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34963049

RESUMO

Magnetite and maghemite multicore nanoflowers (NFs) synthesized using the modified polyol-mediated routes are to date among the most effective nanoheaters in magnetic hyperthermia (MHT). Recently, magnetite NFs have also shown high photothermal (PT) performances in the most desired second near-infrared (NIR-II) biological window, making them attractive in the field of nanoparticle-activated thermal therapies. However, what makes magnetic NFs efficient heating agents in both modalities still remains an open question. In this work, we investigate the role of many parameters of the polyol synthesis on the final NFs' size, shape, chemical composition, number of cores, and crystallinity. These nanofeatures are later correlated to the magnetic, optical, and electronic properties of the NFs as well as their collective macroscopic thermal properties in MHT and PT to find relationships between their structure, properties, and function. We evidence the critical role of iron(III) and heating ramps on the elaboration of well-defined NFs with a high number of multicores. While MHT efficiency is found to be proportional to the average number of magnetic cores within the assemblies, the optical responses of the NFs and their collective photothermal properties depend directly on the mean volume of the NFs (as supported by optical cross sections numerical simulations) and strongly on the structural disorder in the NFs, rather than the stoichiometry. The concentration of defects in the nanostructures, evaluated by photoluminescence and Urbach energy (EU), evidence a switch in the optical behavior for a limit value of EU = 0.4 eV where a discontinuous transition from high to poor PT efficiency is also observed.


Assuntos
Compostos Férricos , Hipertermia Induzida , Compostos Férricos/química , Óxido Ferroso-Férrico , Fenômenos Magnéticos
7.
Commun Chem ; 5(1): 164, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36698002

RESUMO

Oriented attachment of nanobricks into hierarchical multi-scale structures such as inorganic nanoclusters is one of the crystallization mechanisms that has revolutionized the field of nano and materials science. Herein, we show that the mosaicity, which measures the misalignment of crystal plane orientation between the nanobricks, governs their magneto-optical properties as well as the magnetic heating functions of iron oxide nanoclusters. Thanks to high-temperature and time-resolved millifluidic, we were able to isolate and characterize (structure, properties, function) the different intermediates involved in the diverse steps of the nanocluster's formation, to propose a detailed dynamical mechanism of their formation and establish a clear correlation between changes in mosaicity at the nanoscale and their resulting physical properties. Finally, we demonstrate that their magneto-optical properties can be described using simple molecular theories.

8.
Phys Chem Chem Phys ; 23(32): 17606-17615, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34369507

RESUMO

We study the impact of delayed feedbacks in the collective synchronization of ensembles of identical and autonomous micro-oscillators. To this aim, we consider linear arrays of Belousov-Zhabotinsky (BZ) oscillators confined in micro-compartmentalised systems, where the delayed feedback mimics natural lags that can arise due to the confinement properties and mechanisms driving the inter-oscillator communication. The micro-oscillator array is modeled as a set of Oregonator-like kinetics coupled via mass exchange of the chemical messengers. Changes in the synchronization patterns are explored by varying the delayed feedback introduced in the messenger species Br2. A direct transition from anti-phase to in-phase synchronization and back to the initial anti-phase scheme is observed by progressively increasing the time delay from zero to the value T0, which is the oscillation period characterising the system without any delayed coupling. The route from anti- to in-phase oscillations (and back) consists of regimes where windows of in-phase oscillations are periodically broken by anti-phase beats. Similarities between these phase transition dynamics and synchronization scenarios characterising the coordination of oscillatory limb movements are finally discussed.

9.
Expert Rev Med Devices ; 18(7): 697-705, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34085555

RESUMO

Introduction: Urinary stents have been around for the last 4 decades, urinary catheters even longer. They are associated with infections, encrustation, migration, and patient discomfort. Research efforts to improve them have shifted onto molecular and cellular levels. ENIUS brought together translational scientists to improve urinary implants and reduce morbidity.Methods & materials: A working group within the ENIUS network was tasked with assessing future research lines for the improvement of urinary implants.Topics were researched systematically using Embase and PubMed databases. Clinicaltrials.gov was consulted for ongoing trials.Areas covered: Relevant topics were coatings with antibodies, enzymes, biomimetics, bioactive nano-coats, antisense molecules, and engineered tissue. Further, pH sensors, biodegradable metals, bactericidal bacteriophages, nonpathogenic uropathogens, enhanced ureteric peristalsis, electrical charges, and ultrasound to prevent stent encrustations were addressed.Expert opinion: All research lines addressed in this paper seem viable and promising. Some of them have been around for decades but are yet to proceed to clinical application (i.e. tissue engineering). Others are very recent and, at least in urology, still only conceptual (i.e. antisense molecules). Perhaps the most important learning point resulting from this pan-European multidisciplinary effort is that collaboration between all stakeholders is not only fruitful but also truly essential.


Assuntos
Pesquisa Interdisciplinar , Stents , Cateteres Urinários , Humanos
10.
Langmuir ; 37(24): 7442-7448, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34110835

RESUMO

Water/oil/water (w/o/w) double emulsions (DEs) are multicompartment structures which can be used in many technological applications and in fundamental studies as models of cell like microreactors or templates for other materials. Herein, we study the flow dynamics of water/oil/water double emulsions generated in a microfluidic device and stabilized with the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). We show that by varying the concentration of lipids in the oil phase (chloroform) or by modulating the viscosity of the aqueous continuous phase, the double emulsions under flow exhibit a rich dynamic behavior. An initial deformation of the double emulsions is followed by tube extraction at the rear end, relative to the flow direction, resulting in pinch off at the tube extremity by which small aqueous compartments are released. These compartments are phospholipid vesicles as deduced from fluorescence experiments. The overall process can thus be of help to shed light on the mechanical aspects of phenomena such as the budding and fusion in cell membranes.


Assuntos
Microfluídica , Fosfolipídeos , Emulsões , Viscosidade , Água
11.
ACS Nano ; 15(6): 9782-9795, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34032115

RESUMO

Despite efforts in producing nanoparticles with tightly controlled designs and specific physicochemical properties, these can undergo massive nano-bio interactions and bioprocessing upon internalization into cells. These transformations can generate adverse biological outcomes and premature loss of functional efficacy. Hence, understanding the intracellular fate of nanoparticles is a necessary prerequisite for their introduction in medicine. Among nanomaterials devoted to theranostics is copper sulfide (CuS), which provides outstanding optical properties along with easy synthesis and low cost. Herein, we performed a long-term multiscale study on the bioprocessing of hollow CuS nanoparticles (CuS NPs) and rattle-like iron oxide nanoflowers@CuS core-shell hybrids (IONF@CuS NPs) when inside stem cells and cancer cells, cultured as spheroids. In the spheroids, both CuS NPs and IONF@CuS NPs are rapidly dismantled into smaller units (day 0 to 3), and hair-like nanostructures are generated (day 9 to 21). This bioprocessing triggers an adaptation of the cellular metabolism to the internalized metals without impacting cell viability, differentiation, or oxidative stress response. Throughout the remodeling, a loss of IONF-derived magnetism is observed, but, surprisingly, the CuS photothermal potential is preserved, as demonstrated by a full characterization of the photothermal conversion across the bioprocessing process. The maintained photothermal efficiency correlated well with synchrotron X-ray absorption spectroscopy measurements, evidencing a similar chemical phase for Cu but not for Fe over time. These findings evidence that the intracellular bioprocessing of CuS nanoparticles can reshape them into bioengineered nanostructures without reducing the photothermal function and therapeutic potential.


Assuntos
Nanopartículas , Nanoestruturas , Cobre , Fototerapia , Sulfetos
12.
Chem Commun (Camb) ; 57(48): 5945-5948, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34019041

RESUMO

We describe a novel synthesis allowing one to enhance the load of magnetic nanoparticles and gold nanorods in nanogels. Two different structures, simple cores and core-shell, were synthesized and their heating properties upon alternating magnetic field or laser exposure are compared. Remarkably, the core-shell structure showed a greater heating capacity in the two modalities.


Assuntos
Ouro/química , Nanopartículas de Magnetita/química , Nanogéis/química , Calefação , Campos Magnéticos , Estrutura Molecular , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície
13.
J Nanobiotechnology ; 19(1): 117, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902616

RESUMO

BACKGROUND: The interactions between nanoparticles and the biological environment have long been studied, with toxicological assays being the most common experimental route. In parallel, recent growing evidence has brought into light the important role that cell mechanics play in numerous cell biological processes. However, despite the prevalence of nanotechnology applications in biology, and in particular the increased use of magnetic nanoparticles for cell therapy and imaging, the impact of nanoparticles on the cells' mechanical properties remains poorly understood. RESULTS: Here, we used a parallel plate rheometer to measure the impact of magnetic nanoparticles on the viscoelastic modulus G*(f) of individual cells. We show how the active uptake of nanoparticles translates into cell stiffening in a short time scale (< 30 min), at the single cell level. The cell stiffening effect is however less marked at the cell population level, when the cells are pre-labeled under a longer incubation time (2 h) with nanoparticles. 24 h later, the stiffening effect is no more present. Imaging of the nanoparticle uptake reveals almost immediate (within minutes) nanoparticle aggregation at the cell membrane, triggering early endocytosis, whereas nanoparticles are almost all confined in late or lysosomal endosomes after 2 h of uptake. Remarkably, this correlates well with the imaging of the actin cytoskeleton, with actin bundling being highly prevalent at early time points into the exposure to the nanoparticles, an effect that renormalizes after longer periods. CONCLUSIONS: Overall, this work evidences that magnetic nanoparticle internalization, coupled to cytoskeleton remodeling, contributes to a change in the cell mechanical properties within minutes of their initial contact, leading to an increase in cell rigidity. This effect appears to be transient, reduced after hours and disappearing 24 h after the internalization has taken place.


Assuntos
Nanopartículas de Magnetita , Nanopartículas/metabolismo , Nanotecnologia/métodos , Análise de Célula Única/métodos , Membrana Celular , Citoesqueleto/metabolismo , Elasticidade , Endocitose , Endossomos/metabolismo , Humanos , Lisossomos , Microscopia Eletrônica de Transmissão , Reologia , Resistência ao Cisalhamento , Estresse Mecânico
14.
Nanomaterials (Basel) ; 12(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35010070

RESUMO

One of the most versatile routes for the elaboration of nanomaterials in materials science, including the synthesis of magnetic iron oxide nanoclusters, is the high-temperature polyol process. However, despite its versatility, this process still lacks reproducibility and scale-up, in addition to the low yield obtained in final materials. In this work, we demonstrate a home-made multiparametric continuous flow millifluidic system that can operate at high temperatures (up to 400 °C). After optimization, we validate its potential for the production of nanomaterials using the polyol route at 220 °C by elaborating ferrite iron oxide nanoclusters called nanoflowers (CoFe2O4, Fe3O4, MnFe2O4) with well-controlled nanostructure and composition, which are highly demanded due to their physical properties. Moreover, we demonstrate that by using such a continuous process, the chemical yield and reproducibility of the nanoflower synthesis are strongly improved as well as the possibility to produce these nanomaterials on a large scale with quantities up to 45 g per day.

15.
Angew Chem Int Ed Engl ; 60(4): 2036-2041, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33044791

RESUMO

The transformation of glycals into 2,3-unsaturated glycosyl derivatives, reported by Ferrier in 1962, is supposed to involve an α,ß unsaturated glycosyl cation, an elusive ionic species that has still to be observed experimentally. Herein, while combination of TfOH and flow conditions failed to observe this ionic species, its extended lifetime in superacid solutions allowed its characterization by NMR-based structural analysis supported by DFT calculations. This allyloxycarbenium ion was further exploited in the Ferrier rearrangement to afford unsaturated nitrogen-containing C-aryl glycosides and C-alkyl glycosides under superacid and flow conditions, respectively.

16.
Nanoscale ; 12(38): 19918-19930, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32986054

RESUMO

Magnetic nanoparticles have a broad spectrum of biomedical applications including cell separation, diagnostics and therapy. One key issue is little explored: how do the engineered nanoparticles interact with blood components after injection? The formation of bioconjugates in the bloodstream and subsequent reactions are potentially toxic due to the ability to induce an immune response. The understanding of the underlying processes is of major relevance to design not only efficient, but also safe nanoparticles for e.g. targeted drug delivery applications. In this study, we report on maghemite nanoparticles functionalized with citrate-, dextran- and polyethylene glycol coatings and their interaction with the clotting protein fibrinogen. Further, we investigate using biophysical tools (e.g. dynamic light scattering, circular dichroism spectroscopy and quartz crystal microbalance) the interaction of the magnetic nanoparticles-fibrinogen bioconjugates with artificial cell membranes as a model system for blood platelets. We found that fibrinogen corona formation provides colloidal stability to maghemite nanoparticles. In addition, bioconjugates of fibrinogen with dextran- and citrate-coated NPs interact with integrin-containing lipid bilayer, especially upon treatment with divalent ions, whereas PEG-coating reveals minor interaction. Our study at the interface of protein-conjugated nanoparticles and artificial cell membranes is essential for engineering safe nanoparticles for drug delivery applications.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Fibrinogênio , Integrinas , Membranas Artificiais , Polietilenoglicóis
17.
Chem Commun (Camb) ; 56(79): 11771-11774, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-32966401

RESUMO

Stable cell-like multisomes encapsulating the chemical oscillator Belousov-Zhabotinsky were engineered and organized in a linear network of diffusively-coupled chemical oscillators by using microfluidics. The multi-compartmentalization and the spatial configuration resulted in a new global synchronization scenario. After an initial induction interval, all the oscillators started to pulsate in phase with a halved period with respect to the natural one.

18.
Nanomaterials (Basel) ; 10(8)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784579

RESUMO

The photothermal use of iron oxide magnetic nanoparticles (NPs) is becoming more and more popular and documented. Herein, we compared the photothermal (PT) therapy potential versus magnetic hyperthermia (MHT) modality of magnetic nanospheres, largely used in the biomedical field and magnetic multicore nanoflowers known among the best nanoheaters. The NPs were imaged using transmission electron microscopy and their optical properties characterized by UV-Vis-NIR-I-II before oxidation (magnetite) and after oxidation to maghemite. The efficiency of all NPs in MHT and PT in the preferred second near-infrared (NIR-II) biological window was carried out in water and in cancer cells. We show that, in water, magnetite nanoflowers are the most efficient nanoheaters for both modalities. Moreover, PT appears much more efficient than MHT at low NP dose, whatever the NP. In the cellular environment, for PT, efficiency was totally conserved, with magnetite nanoflowers as the best performers compared to MHT, which was totally lost. Finally, cell uptake was significantly increased for the nanoflowers compared to the nanospheres. Finally, the antitumor therapy was investigated for all NPs at the same dose delivered to the cancer cells and at reasonable laser power density (0.3 W/cm2), which showed almost total cell death for magnetite nanoflowers.

19.
J Phys Chem Lett ; 11(6): 2014-2020, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32078774

RESUMO

Networks of diffusively coupled inorganic oscillators, confined in nano- and microcompartments, are effective for predicting and understanding the global dynamics of those systems where the diffusion of activatory or inhibitory signals regulates the communication among different individuals. By taking advantage of a microfluidic device, we study the dynamics of arrays of diffusively coupled Belousov-Zhabotinsky (BZ) oscillators encapsulated in water-in-oil single emulsions. New synchronization patterns are induced and controlled by modulating the structural and chemical properties of the phospholipid-based biomimetic membranes via the introduction of specific dopants. Doping molecules do not alter the membrane basic backbone, but modify the lamellarity (and, in turn, the permeability) or interact chemically with the reaction intermediates. A transition from two-period clusters showing 1:2 period-locking to one-period antiphase synchronization is observed by decreasing the membrane lamellarity. An unsynchronized scenario is found when the dopant is able to interfere with chemical communication by reacting with the chemical messengers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA