Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cell Death Differ ; 30(5): 1097-1154, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100955

RESUMO

Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.


Assuntos
Apoptose , Caspases , Animais , Humanos , Apoptose/genética , Morte Celular , Caspases/genética , Caspases/metabolismo , Carcinogênese , Mamíferos/metabolismo
2.
bioRxiv ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36945615

RESUMO

Interspecies chimera formation with human pluripotent stem cells (PSCs) holds great promise to generate humanized animal models and provide donor organs for transplant. However, the approach is currently limited by low levels of human cells ultimately represented in chimeric embryos. Different strategies have been developed to improve chimerism by genetically editing donor human PSCs. To date, however, it remains unexplored if human chimerism can be enhanced in animals through modifying the host embryos. Leveraging the interspecies PSC competition model, here we discovered retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling, an RNA sensor, in "winner" cells plays an important role in the competitive interactions between co-cultured mouse and human PSCs. We found that genetic inactivation of Ddx58/Ifih1-Mavs-Irf7 axis compromised the "winner" status of mouse PSCs and their ability to outcompete PSCs from evolutionarily distant species during co-culture. Furthermore, by using Mavs-deficient mouse embryos we substantially improved unmodified donor human cell survival. Comparative transcriptome analyses based on species-specific sequences suggest contact-dependent human-to-mouse transfer of RNAs likely plays a part in mediating the cross-species interactions. Taken together, these findings establish a previously unrecognized role of RNA sensing and innate immunity in "winner" cells during cell competition and provides a proof-of-concept for modifying host embryos, rather than donor PSCs, to enhance interspecies chimerism.

3.
Mob DNA ; 13(1): 30, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461093

RESUMO

BACKGROUND: LINE-1s, Alus and SVAs are the only retrotransposition competent elements in humans. Their mobilization followed by insertional mutagenesis is often linked to disease. Apart from these rare integration events, accumulation of retrotransposition intermediates in the cytoplasm is potentially pathogenic due to induction of inflammatory response pathways. Although the retrotransposition of LINE-1 and Alu retroelements has been studied in considerable detail, there are mixed observations about the localization of their RNAs. RESULTS: We undertook a comprehensive and unbiased approach to analyze retroelement RNA localization using common cell lines and publicly available datasets containing RNA-sequencing data from subcellular fractions. Using our customized analytic pipeline, we compared localization patterns of RNAs transcribed from retroelements and single-copy protein coding genes. Our results demonstrate a generalized characteristic pattern of retroelement RNA nuclear localization that is conserved across retroelement classes as well as evolutionarily young and ancient elements. Preferential nuclear enrichment of retroelement transcripts was consistently observed in cell lines, in vivo and across species. Moreover, retroelement RNA localization patterns were dynamic and subject to change during development, as seen in zebrafish embryos. CONCLUSION: The pronounced nuclear localization of transcripts arising from ancient as well as de novo transcribed retroelements suggests that these transcripts are retained in the nucleus as opposed to being re-imported to the nucleus or degraded in the cytoplasm. This raises the possibility that there is adaptive value associated with this localization pattern to the host, the retroelements or possibly both.

4.
Dev Cell ; 57(15): 1833-1846.e6, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35820415

RESUMO

p53 genes are conserved transcriptional activators that respond to stress. These proteins can also downregulate genes, but the mechanisms are not understood and are generally assumed to be indirect. Here, we investigate synthetic and native cis-regulatory elements in Drosophila to examine opposing features of p53-mediated transcriptional control in vivo. We show that transcriptional repression by p53 operates continuously through canonical DNA binding sites that confer p53-dependent transactivation at earlier developmental stages. p53 transrepression is correlated with local H3K9me3 chromatin marks and occurs without the need for stress or Chk2. In sufficiency tests, two p53 isoforms qualify as transrepressors and a third qualifies as a transcriptional activator. Targeted isoform-specific knockouts dissociate these opposing transcriptional activities, highlighting features that are dispensable for transactivation but critical for repression and for proper germ cell formation. Together, these results demonstrate that certain p53 isoforms function as constitutive tissue-specific repressors, raising important implications for tumor suppression by the human counterpart.


Assuntos
Cromatina , Proteína Supressora de Tumor p53 , Animais , Sítios de Ligação , Cromatina/genética , Drosophila/genética , Drosophila/metabolismo , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo
5.
Nat Genet ; 53(5): 672-682, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33833453

RESUMO

Transposable elements or transposons are major players in genetic variability and genome evolution. Aberrant activation of long interspersed element-1 (LINE-1 or L1) retrotransposons is common in human cancers, yet their tumor-type-specific functions are poorly characterized. We identified MPHOSPH8/MPP8, a component of the human silencing hub (HUSH) complex, as an acute myeloid leukemia (AML)-selective dependency by epigenetic regulator-focused CRISPR screening. Although MPP8 is dispensable for steady-state hematopoiesis, MPP8 loss inhibits AML development by reactivating L1s to induce the DNA damage response and cell cycle exit. Activation of endogenous or ectopic L1s mimics the phenotype of MPP8 loss, whereas blocking retrotransposition abrogates MPP8-deficiency-induced phenotypes. Expression of AML oncogenic mutations promotes L1 suppression, and enhanced L1 silencing is associated with poor prognosis in human AML. Hence, while retrotransposons are commonly recognized for their cancer-promoting functions, we describe a tumor-suppressive role for L1 retrotransposons in myeloid leukemia.


Assuntos
Inativação Gênica , Leucemia Mieloide/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Animais , Sistemas CRISPR-Cas/genética , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Epigênese Genética , Regulação Leucêmica da Expressão Gênica , Genoma Humano , Instabilidade Genômica , Hematopoese/genética , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/genética
6.
Psychiatr Q ; 92(2): 587-600, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32829447

RESUMO

Patients with comorbid mental health and chronic conditions often receive care from both psychiatrists and primary care physicians (PCPs). The introduction of multiple providers into the care process introduces opportunities for disruptions in care continuity. The purpose of this study was to explore psychiatrists' and PCPs' comfort prescribing, along with their comfort having other physician specialties prescribe medications for cardiometabolic, psychiatric, and neurological/behavioral conditions. This cross-sectional study utilized an online, validated, pilot-tested, anonymous survey to examine prescribing practices of psychiatrists and PCPs. Eligible participants included physicians with medical degrees, U.S. prescribing authority, and active patient care for ≥2 days/week. Outcomes of interest were physicians' self-comfort and cross-specialty comfort (other specialists prescribing mutual patients' medications) prescribing cardiometabolic, psychiatric, and neurological/behavioral medications. Comfort prescribing was measured using 7-point Likert scales. Discrepancies in comfort were analyzed using student's, one-sample, and paired t-tests. Multiple linear regressions examined associations between physician practice characteristics and physicians' comfort-level prescribing cardiometabolic and psychiatric medication categories. Among 50 psychiatrists and 50 PCPs, psychiatrists reported significantly lower self-comfort prescribing cardiometabolic medications (mean ± SD = 2.99 ± 1.63 vs. 6.77 ± 0.39, p < 0.001), but significantly higher self-comfort prescribing psychiatric medications (mean ± SD = 6.79 ± 0.41 vs. 6.00 ± 0.88, p < 0.001) and neurological/behavioral medications (mean ± SD = 6.48 ± 0.74 vs. 5.56 ± 1.68, p < 0.001) than PCPs. After adjusting for covariates, physician specialty was strongly associated with self-comfort prescribing cardiometabolic and psychiatric medication categories (both p < 0.001). Differences between self-comfort and cross-specialty comfort were identified. Because comfort prescribing medications differed by physician type, incorporating psychiatrists through collaborative methods with PCPs could potentially ensure comfort among physicians when initiating medications.


Assuntos
Papel do Médico , Médicos de Atenção Primária , Padrões de Prática Médica , Atenção Primária à Saúde , Psiquiatria , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Genes Dev ; 34(21-22): 1439-1451, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33060137

RESUMO

p53 is a potent tumor suppressor and commonly mutated in human cancers. Recently, we demonstrated that p53 genes act to restrict retrotransposons in germline tissues of flies and fish but whether this activity is conserved in somatic human cells is not known. Here we show that p53 constitutively restrains human LINE1s by cooperatively engaging sites in the 5'UTR and stimulating local deposition of repressive histone marks at these transposons. Consistent with this, the elimination of p53 or the removal of corresponding binding sites in LINE1s, prompted these retroelements to become hyperactive. Concurrently, p53 loss instigated chromosomal rearrangements linked to LINE sequences and also provoked inflammatory programs that were dependent on reverse transcriptase produced from LINE1s. Taken together, our observations establish that p53 continuously operates at the LINE1 promoter to restrict autonomous copies of these mobile elements in human cells. Our results further suggest that constitutive restriction of these retroelements may help to explain tumor suppression encoded by p53, since erupting LINE1s produced acute oncogenic threats when p53 was absent.


Assuntos
Regulação da Expressão Gênica/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Linhagem Celular , Deleção de Genes , Rearranjo Gênico/genética , Código das Histonas/genética , Humanos , Imunidade/genética , Elementos Nucleotídeos Longos e Dispersos/imunologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteína Supressora de Tumor p53/genética
8.
Fly (Austin) ; 14(1-4): 3-9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32615907

RESUMO

Glutamine: fructose-6-phosphate amidotransferase (GFAT) enzymes catalyse the first committed step of the hexosamine biosynthesis pathway (HBP) using glutamine and fructose-6-phosphate to form glucosamine-6-phosphate (GlcN6P). Numerous species (e.g. mouse, rat, zebrafish, chicken) including humans and Drosophila encode two broadly expressed copies of this enzyme but whether these perform redundant, partially overlapping or distinct functions is not known. To address this question, we produced single gene null mutations in the fly counterparts of gfat1 and gfat2. Deletions for either enzyme were fully lethal and homozygotes lacking either GFAT1 or GFAT2 died at or prior to the first instar larval stage. Therefore, when genetically eliminated, neither isoform was able to compensate for the other. Importantly, dietary supplementation with D-glucosamine-6-phosphate rescued GFAT2 deficiency and restored viability to gfat2-/- mutants. In contrast, glucosamine-6-phosphate did not rescue gfat1-/- animals.


Assuntos
Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Sistemas CRISPR-Cas , Suplementos Nutricionais , Proteínas de Drosophila/genética , Regulação Enzimológica da Expressão Gênica , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Larva , Mutação , Sobrevida
9.
Cancer Epidemiol Biomarkers Prev ; 29(8): 1689-1691, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32467350

RESUMO

BACKGROUND: Increasing availability of highly active antiretroviral therapy (HAART) for human immunodeficiency virus (HIV) has led to prolonged survival and rising incidence of non-HIV-defining cancers among patients with HIV. Compared with the general population, risk of colorectal cancer may differ among those with HIV due to immunosuppression, oncogenic viral coinfections, and higher prevalence of risk factors. METHODS: We identified patients (age ≥50 years) diagnosed with HIV, prescribed HAART for ≥6 months, and receiving care in two large health care systems in Dallas, TX. Patients received a first colonoscopy between January 2009 and December 2017. We calculated a standardized prevalence ratio as the ratio of observed to expected number of advanced neoplasia (high-risk adenoma or colorectal cancer) using an age- and sex-matched cohort of patients without HIV (n = 10,250). RESULTS: Among patients with HIV (n = 839), about two thirds (60.1%) had normal findings at colonoscopy; 6.8% had hyperplastic polyps only, 20.4% had low-risk adenomas, 11.7% had high-risk adenomas, and 1.1% had colorectal cancer. Prevalence of advanced neoplasia was similar between patients with and without HIV, with a standardized prevalence ratio of 0.99 (95% confidence interval, 0.81-1.19). CONCLUSIONS: There was no difference in the prevalence of colorectal neoplasia between patients with and without HIV. IMPACT: Patients with HIV appear to have similar risk of colorectal neoplasia compared to those without HIV and can therefore follow average-risk colorectal cancer screening guidelines.


Assuntos
Neoplasias Colorretais/etiologia , Infecções por HIV/complicações , Neoplasias Colorretais/fisiopatologia , Feminino , Infecções por HIV/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
10.
Mol Biol Cell ; 30(11): 1339-1351, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30892991

RESUMO

TP53 is the most frequently mutated gene in human cancers, and despite intensive research efforts, genome-scale studies of p53 function in whole animal models are rare. The need for such in vivo studies is underscored by recent challenges to established paradigms, indicating that unappreciated p53 functions contribute to cancer prevention. Here we leveraged the Drosophila system to interrogate p53 function in a postmitotic context. In the developing embryo, p53 robustly activates important apoptotic genes in response to radiation-induced DNA damage. We recently showed that a p53 enhancer (p53RErpr) near the cell death gene reaper forms chromatin contacts and enables p53 target activation across long genomic distances. Interestingly, we found that this canonical p53 apoptotic program fails to activate in adult heads. Moreover, this failure to exhibit apoptotic responses was not associated with altered chromatin contacts. Instead, we determined that p53 does not occupy the p53RErpr enhancer in this postmitotic tissue as it does in embryos. Through comparative RNA-seq and chromatin immunoprecipitation-seq studies of developing and postmitotic tissues, we further determined that p53 regulates distinct transcriptional programs in adult heads, including DNA repair, metabolism, and proteolysis genes. Strikingly, in the postmitotic context, p53-binding landscapes were poorly correlated with nearby transcriptional effects, raising the possibility that p53 enhancers could be generally acting through long distances.


Assuntos
Reparo do DNA , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Imunoprecipitação da Cromatina , DNA/metabolismo , DNA/efeitos da radiação , Dano ao DNA , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Radiação Ionizante , Análise de Sequência de DNA , Análise de Sequência de RNA , Proteína Supressora de Tumor p53/genética
11.
Mob DNA ; 9: 21, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30211913

RESUMO

The Mobile Genetic Elements and Genome Plasticity conference was hosted by Keystone Symposia in Santa Fe, NM USA, February 11-15, 2018. The organizers were Marlene Belfort, Evan Eichler, Henry Levin and Lynn Maquat. The goal of this conference was to bring together scientists from around the world to discuss the function of transposable elements and their impact on host species. Central themes of the meeting included recent innovations in genome analysis and the role of mobile DNA in disease and evolution. The conference included 200 scientists who participated in poster presentations, short talks selected from abstracts, and invited talks. A total of 58 talks were organized into eight sessions and two workshops. The topics varied from mechanisms of mobilization, to the structure of genomes and their defense strategies to protect against transposable elements.

12.
Trends Genet ; 34(11): 846-855, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30195581

RESUMO

p53, the most commonly mutated tumor suppressor, is a transcription factor known to regulate proliferation, senescence, and apoptosis. Compelling studies have found that p53 may prevent oncogenesis through effectors that are unrelated to these canonical processes and recent findings have uncovered ancient roles for p53 in the containment of mobile elements. Together, these developments raise the possibility that some p53-driven cancers could result from unrestrained transposons. Here, we explore evidence linking conserved features of p53 biology to the control of transposons. We also show how p53-deficient cells can be exploited to probe the behavior of transposons and illustrate how unrestrained transposons incited by p53 loss might contribute to human malignancies.


Assuntos
Elementos de DNA Transponíveis/genética , Neoplasias/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Proliferação de Células/genética , Senescência Celular/genética , Instabilidade Genômica/genética , Humanos
13.
Cell Death Differ ; 25(3): 486-541, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29362479

RESUMO

Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.


Assuntos
Morte Celular , Animais , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Necrose/metabolismo , Necrose/patologia
14.
Curr Biol ; 27(19): 3010-3016.e3, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28966088

RESUMO

Retrotransposons are a pervasive class of mobile elements present in the genomes of virtually all forms of life [1, 2]. In metazoans, these are preferentially active in the germline, which, in turn, mounts defenses that restrain their activity [3, 4]. Here we report that certain classes of retrotransposons ensure transgenerational inheritance by invading presumptive germ cells before they are formed. Using sensitized Drosophila and zebrafish models, we found that diverse classes of retrotransposons migrate to the germ plasm, a specialized region of the oocyte that prefigures germ cells and specifies the germline of descendants in the fertilized egg. In Drosophila, we found evidence for a "stowaway" model, whereby Tahre retroelements traffic to the germ plasm by mimicking oskar RNAs and engaging the Staufen-dependent active transport machinery. Consistent with this, germ plasm determinants attracted retroelement RNAs even when these components were ectopically positioned in bipolar oocytes. Likewise, vertebrate retrotransposons similarly migrated to the germ plasm in zebrafish oocytes. Together, these results suggest that germ plasm targeting represents a fitness strategy adopted by some retrotransposons to ensure transgenerational propagation.


Assuntos
Drosophila melanogaster/genética , Oócitos/metabolismo , Retroelementos/genética , Peixe-Zebra/genética , Animais , Hereditariedade/genética , Oócitos/crescimento & desenvolvimento , RNA Mensageiro/metabolismo
15.
Bioessays ; 38(11): 1111-1116, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27644006

RESUMO

Throughout the animal kingdom, p53 genes function to restrain mobile elements and recent observations indicate that transposons become derepressed in human cancers. Together, these emerging lines of evidence suggest that cancers driven by p53 mutations could represent "transpospoathies," i.e. disease states linked to eruptions of mobile elements. The transposopathy hypothesis predicts that p53 acts through conserved mechanisms to contain transposon movement, and in this way, prevents tumor formation. How transposon eruptions provoke neoplasias is not well understood but, from a broader perspective, this hypothesis also provides an attractive framework to explore unrestrained mobile elements as inciters of late-onset idiopathic disease. Also see the video abstract here.


Assuntos
Elementos de DNA Transponíveis , Neoplasias/genética , Proteína Supressora de Tumor p53/genética , Animais , Humanos , Mutação , Neoplasias/metabolismo
16.
Genes Dev ; 30(1): 64-77, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26701264

RESUMO

Throughout the animal kingdom, p53 genes govern stress response networks by specifying adaptive transcriptional responses. The human member of this gene family is mutated in most cancers, but precisely how p53 functions to mediate tumor suppression is not well understood. Using Drosophila and zebrafish models, we show that p53 restricts retrotransposon activity and genetically interacts with components of the piRNA (piwi-interacting RNA) pathway. Furthermore, transposon eruptions occurring in the p53(-) germline were incited by meiotic recombination, and transcripts produced from these mobile elements accumulated in the germ plasm. In gene complementation studies, normal human p53 alleles suppressed transposons, but mutant p53 alleles from cancer patients could not. Consistent with these observations, we also found patterns of unrestrained retrotransposons in p53-driven mouse and human cancers. Furthermore, p53 status correlated with repressive chromatin marks in the 5' sequence of a synthetic LINE-1 element. Together, these observations indicate that ancestral functions of p53 operate through conserved mechanisms to contain retrotransposons. Since human p53 mutants are disabled for this activity, our findings raise the possibility that p53 mitigates oncogenic disease in part by restricting transposon mobility.


Assuntos
Genes p53/genética , Retroelementos/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Drosophila/genética , Feminino , Variação Genética , Humanos , Masculino , Camundongos , Mutação/genética , Neoplasias/genética , Retroelementos/genética , Peixe-Zebra/genética
17.
IET Image Process ; 9(5): 424-433, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26500693

RESUMO

Apoptotic programmed cell death (PCD) is a fundamental aspect of developmental maturation. However, the authors' understanding of apoptosis, especially in the multi-cell regime, is incomplete because of the difficulty of identifying dying cells by conventional strategies. Real-time in vivo microscopy of Drosophila, an excellent model system for studying the PCD during development, has been used to uncover plausible collective apoptosis at the tissue level, although the dynamic regulation of the process remains to be deciphered. In this work, the authors have developed an image-analysis program that can quantitatively analyse time-lapse microscopy of live tissues undergoing apoptosis with a fluorescent nuclear marker, and subsequently extract the spatiotemporal patterns of multicellular response. The program can process a large number of cells (>103) automatically tracked across sets of image frames. It is applied to characterise the apoptosis of Drosophila wing epithelium at eclosion. Using the natural anatomic structures as reference, the authors identify dynamic patterns in the progression of PCD within the Drosophila tissues. The results not only confirm the previously observed collective multi-cell behaviour from a quantitative perspective, but also reveal a plausible role played by the anatomic structures, such as the wing veins, in the PCD propagation across the Drosophila wing.

18.
Mech Dev ; 138 Pt 3: 349-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26226435

RESUMO

Elimination of cells and tissues by apoptosis is a highly conserved and tightly regulated process. In Drosophila, the entire wing epithelium is completely removed shortly after eclosion. The cells that make up this epithelium are collectively eliminated through a highly synchronized form of apoptotic cell death, involving canonical apoptosome genes. Here we present evidence that collective cell death does not require cell-cell contact and show that transcription of the IAP antagonist, head involution defective, is acutely induced in wing epithelial cells prior to this process. hid mRNAs accumulate to levels that exceed a component of the ribosome and likewise, Hid protein becomes highly abundant in these same cells. hid function is required for collective cell death, since loss of function mutants shows persisting wing epithelial cells and, furthermore, silencing of the hormone bursicon in the CNS produced collective cell death defective phenotypes manifested in the wing epithelium. Taken together, our observations suggest that acute induction of Hid primes wing epithelial cells for collective cell death and that Bursicon is a strong candidate to trigger this process, possibly by activating the abundant pool of Hid protein already present.


Assuntos
Apoptose/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Neuropeptídeos/fisiologia , Asas de Animais/citologia , Asas de Animais/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Apoptose/genética , Adesão Celular , Comunicação Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Proteínas Inibidoras de Apoptose/metabolismo , Hormônios de Invertebrado/antagonistas & inibidores , Hormônios de Invertebrado/genética , Hormônios de Invertebrado/fisiologia , Neuropeptídeos/genética , Asas de Animais/metabolismo
19.
Cell Rep ; 10(7): 1096-109, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25704813

RESUMO

The p53 tumor suppressor plays a key role in maintaining cellular integrity. In response to diverse stress signals, p53 can trigger apoptosis to eliminate damaged cells or cell-cycle arrest to enable cells to cope with stress and survive. However, the transcriptional networks underlying p53 pro-survival function are incompletely understood. Here, we show that in oncogenic-Ras-expressing cells, p53 promotes oxidative phosphorylation (OXPHOS) and cell survival upon glucose starvation. Analysis of p53 transcriptional activation domain mutants reveals that these responses depend on p53 transactivation function. Using gene expression profiling and ChIP-seq analysis, we identify several p53-inducible fatty acid metabolism-related genes. One such gene, Acad11, encoding a protein involved in fatty acid oxidation, is required for efficient OXPHOS and cell survival upon glucose starvation. This study provides new mechanistic insight into the pro-survival function of p53 and suggests that targeting this pathway may provide a strategy for therapeutic intervention based on metabolic perturbation.


Assuntos
Acil-CoA Desidrogenase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acil-CoA Desidrogenase/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Redes Reguladoras de Genes , Glucose/farmacologia , Humanos , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Estrutura Terciária de Proteína , Interferência de RNA , Alinhamento de Sequência , Estresse Fisiológico , Ativação Transcricional , Transplante Heterólogo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética
20.
PLoS One ; 9(8): e104858, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25121966

RESUMO

BACKGROUND: Ionizing radiation is genotoxic to cells. Healthy tissue toxicity in patients and radiation resistance in tumors present common clinical challenges in delivering effective radiation therapies. Radiation response is a complex, polygenic trait with unknown genetic determinants. The Drosophila Genetic Reference Panel (DGRP) provides a model to investigate the genetics of natural variation for sensitivity to radiation. METHODS AND FINDINGS: Radiation response was quantified in 154 inbred DGRP lines, among which 92 radiosensitive lines and 62 radioresistant lines were classified as controls and cases, respectively. A case-control genome-wide association screen for radioresistance was performed. There are 32 single nucleotide polymorphisms (SNPs) associated with radio resistance at a nominal p<10(-5); all had modest effect sizes and were common variants with the minor allele frequency >5%. All the genes implicated by those SNP hits were novel, many without a known role in radiation resistance and some with unknown function. Variants in known DNA damage and repair genes associated with radiation response were below the significance threshold of p<10(-5) and were not present among the significant hits. No SNP met the genome-wide significance threshold (p = 1.49 × 10(-7)), indicating a necessity for a larger sample size. CONCLUSIONS: Several genes not previously associated with variation in radiation resistance were identified. These genes, especially the ones with human homologs, form the basis for exploring new pathways involved in radiation resistance in novel functional studies. An improved DGRP model with a sample size of at least 265 lines and ideally up to 793 lines is recommended for future studies of complex traits.


Assuntos
Drosophila melanogaster/efeitos da radiação , Estudo de Associação Genômica Ampla , Tolerância a Radiação/genética , Animais , Drosophila melanogaster/genética , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA