Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 5(3): e002836, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27068630

RESUMO

BACKGROUND: The geometric organization of myocytes in the ventricular wall comprises the structural underpinnings of cardiac mechanical function. Cardiac myosin binding protein-C (MYBPC3) is a sarcomeric protein, for which phosphorylation modulates myofilament binding, sarcomere morphology, and myocyte alignment in the ventricular wall. To elucidate the mechanisms by which MYBPC3 phospho-regulation affects cardiac tissue organization, we studied ventricular myoarchitecture using generalized Q-space imaging (GQI). GQI assessed geometric phenotype in excised hearts that had undergone transgenic (TG) modification of phospho-regulatory serine sites to nonphosphorylatable alanines (MYBPC3(AllP-/(t/t))) or phospho-mimetic aspartic acids (MYBPC3(AllP+/(t/t))). METHODS AND RESULTS: Myoarchitecture in the wild-type (MYBPC3(WT)) left-ventricle (LV) varied with transmural position, with helix angles ranging from -90/+90 degrees and contiguous circular orientation from the LV mid-myocardium to the right ventricle (RV). Whereas MYBPC3(AllP+/(t/t)) hearts were not architecturally distinct from MYBPC3(WT), MYBPC3(AllP-/(t/t)) hearts demonstrated a significant reduction in LV transmural helicity. Null MYBPC3((t/t)) hearts, as constituted by a truncated MYBPC3 protein, demonstrated global architectural disarray and loss in helicity. Electron microscopy was performed to correlate the observed macroscopic architectural changes with sarcomere ultrastructure and demonstrated that impaired phosphorylation of MYBPC3 resulted in modifications of the sarcomere aspect ratio and shear angle. The mechanical effect of helicity loss was assessed through a geometric model relating cardiac work to ejection fraction, confirming the mechanical impairments observed with echocardiography. CONCLUSIONS: We conclude that phosphorylation of MYBPC3 contributes to the genesis of ventricular wall geometry, linking myofilament biology with multiscale cardiac mechanics and myoarchitecture.


Assuntos
Proteínas de Transporte/metabolismo , Insuficiência Cardíaca/patologia , Ventrículos do Coração/patologia , Miócitos Cardíacos/patologia , Animais , Fenômenos Biomecânicos , Proteínas de Transporte/genética , Imagem de Difusão por Ressonância Magnética , Modelos Animais de Doenças , Predisposição Genética para Doença , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Ventrículos do Coração/ultraestrutura , Interpretação de Imagem Assistida por Computador , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Mutação , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Fenótipo , Fosforilação , Sarcômeros/metabolismo , Sarcômeros/patologia , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA