Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mSphere ; 9(8): e0040124, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39092912

RESUMO

As climate change alters Earth's biomes, it is expected the transmission dynamics of mosquito-borne viruses will change. While the effects of temperature changes on mosquito-virus interactions and the spread of the pathogens have been elucidated over the last decade, the impact of relative humidity changes is still relatively unknown. To overcome this knowledge gap, we exposed Aedes aegypti females to various humidity conditions. We measured different components of vectorial capacity such as survival, blood-feeding rates, and changes in infection and dissemination of Zika virus. Survival decreased as the humidity level decreased, while infection rates increased as the humidity level decreased. Alternatively, blood feeding rates and disseminated infection rates peaked at the intermediate 50% relative humidity treatment but were the same in the 30% and 80% relative humidity treatments. These results provide empirical evidence that Ae. aegypti exposure to low humidity can enhance Zika virus infection in the mosquito, which has important implications in predicting how climate change will impact mosquito-borne viruses.IMPORTANCEViruses transmitted by mosquitoes to humans are a major public health burden and are expected to increase under climate change. While we know that temperature is an important driver of variation in arbovirus replication in the mosquito, very little is known about how other relevant climate variables such as humidity will influence the interaction between mosquitoes and the viruses they transmit. Given the variability in humidity across environments, and the predicted changes in humidity under climate change, it is imperative that we also study the impact that it has on mosquito infection and transmission of arboviruses.


Assuntos
Aedes , Mudança Climática , Umidade , Mosquitos Vetores , Infecção por Zika virus , Zika virus , Aedes/virologia , Aedes/fisiologia , Animais , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Mosquitos Vetores/virologia , Zika virus/fisiologia , Feminino , Temperatura , Comportamento Alimentar
2.
bioRxiv ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38293131

RESUMO

As climate change alters Earth's biomes, it is expected the transmission dynamics of mosquito-borne viruses will change. While the effects of temperature changes on mosquito-virus interactions and spread of the pathogens have been elucidated over the last decade, the effects of relative humidity changes are still relatively unknown. To overcome this knowledge gap, we exposed Ae. aegypti females to various low humidity conditions and measured different components of vectorial capacity such as survival, blood-feeding rates, and changes in infection and dissemination of Zika virus. Survival decreased as the humidity level decreased, while infection rates increased as the humidity level decreased. Alternatively, blood feeding rates and dissemination rates peaked at the intermediate humidity level, but returned to the levels of the control at the lowest humidity treatment. These results provide empirical evidence that Ae. aegypti exposure to low humidity can enhance Zika virus infection in the mosquito, which has important implications in predicting how climate change will impact mosquito-borne viruses.

3.
bioRxiv ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873391

RESUMO

In the face of climate change, mosquitoes will experience evolving climates including longer periods of drought. An important physiological response to dry environments is the protection against water loss or dehydration, here defined as desiccation tolerance. Various environmental factors including temperature are known to alter interactions between the mosquito, Aedes aegypti , and the arboviruses it transmits, but little is known about how low humidity impacts arboviral infection. Here, we report that a gene upregulated in response to desiccation is important for controlling midgut infection. We have identified two genetically diverse lines of Ae. aegypti with marked differences in desiccation tolerance. To understand if the genetic basis underlying desiccation tolerance is the same between the contrasting lines, we compared gene expression profiles between desiccant treated and non-desiccant treated individuals in both the desiccation tolerant and susceptible lines by RNAseq. Gene expression analysis demonstrates that different genes are differentially expressed in response to desiccation stress between desiccation tolerant and susceptible lines. The most highly expressed transcript under desiccation stress in the desiccation susceptible line encodes a peritrophin protein, Ae Per50. Peritrophins play a crucial role in peritrophic matrix formation after a bloodmeal. Gene silencing of Ae Per50 by RNAi demonstrates that expression of Ae Per50 is required for survival of the desiccation susceptible line under desiccation stress, but not for the desiccation tolerant line. Moreover, the knockdown of Ae Per50 results in higher infection rates and viral replication rates of ZIKV and higher infection rates of CHIKV. Finally, following a bloodmeal, the desiccation susceptible line develops a thicker peritrophic matrix than the desiccation tolerant line. Together these results provide a functional link between the protection against desiccation and midgut infection which has important implications in predicting how climate change will impact mosquito-borne viruses.

4.
PLoS Negl Trop Dis ; 17(9): e0011306, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37747880

RESUMO

The composition of the microbiome is shaped by both environment and host in most organisms, but in the mosquito Aedes aegypti the role of the host in shaping the microbiome is poorly understood. Previously, we had shown that four lines of Ae. aegypti harbored different microbiomes when reared in the same insectary under identical conditions. To determine whether these lines differed from each other across time and in different environments, we characterized the microbiome of the same four lines of Ae. aegypti reared in the original insectary and at another institution. While it was clear that the environment influenced the microbiomes of these lines, we did still observe distinct differences in the microbiome between lines within each insectary. Clear differences were observed in alpha diversity, beta diversity, and abundance of specific bacterial taxa. To determine if the line specific differences in the microbiome were maintained across environments, pair-wise differential abundances of taxa was compared between insectaries. Lines were most similar to other lines from the same insectary than to the same line reared in a different insectary. Additionally, relatively few differentially abundant taxa identified between pairs of lines were shared across insectaries, indicating that line specific properties of the microbiome are not conserved across environments, or that there were distinct microbiota within each insectary. Overall, these results demonstrate that mosquito lines under the same environmental conditions have different microbiomes across microbially- diverse environments and host by microbe interactions affecting microbiome composition and abundance is dependent on environmentally available bacteria.


Assuntos
Aedes , Microbiota , Animais , Aedes/microbiologia , Interações Microbianas , Bactérias/genética , Mosquitos Vetores , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA