Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38137382

RESUMO

The development of bacterial resistance is an increasing global concern that requires discovering new antibacterial agents and strategies. Bacterial quorum sensing (QS) systems play important roles in controlling bacterial virulence, and their targeting could lead to diminishing bacterial pathogenesis. In this context, targeting QS systems without significant influence on bacterial growth is assumed as a promising strategy to overcome resistance development. This study aimed at evaluating the anti-QS and anti-virulence activities of the ß-adrenoreceptor antagonist propranolol at sub-minimal inhibitory concentrations (sub-MIC) against two Gram-negative bacterial models Pseudomonas aeruginosa and Serratia marcescens. The effect of propranolol on the expression of QS-encoding genes was evaluated. Additionally, the affinity of propranolol to QS receptors was virtually attested. The influence of propranolol at sub-MIC on biofilm formation, motility, and production of virulent factors was conducted. The outcomes of the propranolol combination with different antibiotics were assessed. Finally, the in vivo protection assay in mice was performed to assess propranolol's effect on lessening the bacterial pathogenesis. The current findings emphasized the significant ability of propranolol at sub-MIC to reduce the formation of biofilms, motility, and production of virulence factors. In addition, propranolol at sub-MIC decreased the capacity of tested bacteria to induce pathogenesis in mice. Furthermore, propranolol significantly downregulated the QS-encoding genes and showed significant affinity to QS receptors. Finally, propranolol at sub-MIC synergistically decreased the MICs of different antibiotics against tested bacteria. In conclusion, propranolol might serve as a plausible adjuvant therapy with antibiotics for the treatment of serious bacterial infections after further pharmacological and pharmaceutical studies.

2.
Gels ; 9(6)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37367164

RESUMO

Transdermal drug delivery has been widely adopted as a plausible alternative to the oral route of administration, especially for drugs with poor systemic bioavailability. The objective of this study was to design and validate a nanoemulsion (NE) system for transdermal administration of the oral hypoglycemic drug glimepiride (GM). The NEs were prepared using peppermint/bergamot oils as the oil phase and tween 80/transcutol P as the surfactant/co-surfactant mixture (Smix). The formulations were characterized using various parameters such as globule size, zeta potential, surface morphology, in vitro drug release, drug-excipient compatibility studies, and thermodynamic stability. The optimized NE formulation was then incorporated into different gel bases and examined for gel strength, pH, viscosity, and spreadability. The selected drug-loaded nanoemulgel formulation was then screened for ex vivo permeation, skin irritation, and in vivo pharmacokinetics. Characterization studies revealed the spherical shape of NE droplets with an average size of ~80 nm and a zeta potential of -11.8 mV, which indicated good electrokinetic stability of NE. In vitro release studies revealed enhanced drug release from the NE formulation compared to the plain drug. GM-loaded nanoemulgel showed a 7-fold increment in drug transdermal flux compared to plain drug gel. In addition, the GM-loaded nanoemulgel formulation did not elicit any signs of inflammation and/or irritation on the applied skin, suggesting its safety. Most importantly, the in vivo pharmacokinetic study emphasized the potential of nanoemulgel formulation to potentiate the systemic bioavailability of GM, as manifested by a 10-fold rise in the relative bioavailability compared to control gel. Collectively, transdermal NE-based GM gel might represent a promising alternative to oral therapy in the management of diabetes.

3.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35631386

RESUMO

The objective of the current study was to develop poly (lactic-co-glycolic acid) (PLGA) microspheres loaded with the anti-tuberculosis (anti-TB) fluoroquinolone, Levofloxacin (LVX), in the form of dry powder inhalation (DPI). LVX-loaded microspheres were fabricated by solvent evaporation technique. Central Composite Design (CCD) was adopted to optimize the microspheres, with desired particle size, drug loading, and drug entrapment efficiency, for targeting alveolar macrophages via non-invasive pulmonary delivery. Structural characterization studies by differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction analysis revealed the absence of any possible chemical interaction between the drug and the polymer used for the preparation of microspheres. In addition, the optimized drug-loaded microspheres exhibited desired average aerodynamic diameter of 2.13 ± 1.24 µm and fine particle fraction of 75.35 ± 1.42%, indicating good aerosolization properties. In vivo data demonstrated that LVX-loaded microspheres had superior lung accumulation, as evident by a two-fold increase in the area under the curve AUC0-24h, as compared with plain LVX. Furthermore, LVX-loaded microspheres prolonged drug residence time in the lung and maintained a relatively high drug concentration for a longer time, which contributed to a reduced leakage in the systemic circulation. In conclusion, inhalable LVX-loaded microspheres might represent a plausible delivery vehicle for targeting pulmonary tuberculosis via enhancing the therapeutic efficacy of LVX while minimizing its systemic off-target side effects.

4.
Gels ; 8(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35448136

RESUMO

Carvedilol (CRV) is a non-selective third generation beta-blocker used to treat hypertension, congestive heart failure and angina pectoris. Oral administration of CRV showed poor bioavailability (25%), which might be ascribed to its extensive first-pass metabolism. Buccal delivery is known to boost drugs bioavailability. The aim of this study is to investigate the efficacy of bilosomes-based mucoadhesive carvedilol nanosponge for enhancing the oral bioavailability of CRV. The bilosomes were prepared, optimized and characterized for particle size, surface morphology, encapsulation efficiency and ex-vivo permeation studies. Then, the optimized formula was incorporated into a carboxymethyl cellulose/hydroxypropyl cellulose (CMC/HPC) composite mixture to obtain buccal nanosponge enriched with CRV bilosomes. The optimized bilosome formula (BLS9), showing minimum vesicle size, maximum entrapment, and highest cumulative in vitro release, exhibited a spherical shape with 217.2 nm in diameter, 87.13% entrapment efficiency, and sustained drug release for up to 24 h. In addition, ex-vivo drug permeation across sheep buccal mucosa revealed enhanced drug permeation with bilosomal formulations, compared to aqueous drug suspension. Consecutively, BLS9 was incorporated in a CMC/HPC gel and lyophilized for 24 h to obtain bilosomal nanosponge to enhance CRV buccal delivery. Morphological analysis of the prepared nanosponge revealed improved swelling with a porosity of 67.58%. The in vivo assessment of rats indicated that CRV-loaded nanosponge efficiently enhanced systolic/diastolic blood pressure, decreased elevated oxidative stress, improved lipid profile and exhibited a potent cardio-protective effect. Collectively, bilosomal nanosponge might represent a plausible nanovehicle for buccal delivery of CRV for effective management of hypertension.

5.
Int J Pharm ; 615: 121539, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35124114

RESUMO

The presence of anti-polyethylene glycol (PEG) antibodies in the systemic circulation might have potential implications for the therapeutic activity of PEGylated products in vivo in the clinic. In order to study the effect of pre-existing anti-PEG antibodies on the in vivo fate and the therapeutic efficiency of PEGylated therapeutics, we developed a BALB/c mouse model by virtue of the intraperitoneal (i.p.) inoculation of hybridoma cells (HIK-M09 and HIK-M11), secreting monoclonal anti-PEG IgM, mimicking the presence of pre-existing anti-PEG antibodies in the blood. In the model, the titers of anti-PEG IgM in the blood increased as a function of hybridoma cells numbers and time after i.p. inoculation. The in vivo levels of anti-PEG IgM decreased in a dose-dependent manner, following i.v. administration of empty PEGylated liposomes. C26 tumor-bearing mice with measurable levels of anti-PEG IgM, receiving i.v. injection of DiR-labeled empty PEGylated liposomes, showed lower levels of liposomal tumor accumulation and higher levels of liver and spleen accumulation, compared to C26 tumor-bearing mice without measurable anti-PEG IgM. This specifies that the presence of anti-PEG IgM in the murine circulation induced accelerated blood clearance of PEGylated liposomes and reduced their tumor accumulation. The biodistribution and antitumor efficacy of commercially available doxorubicin (DXR)-containing PEGylated liposomes, Doxil®, were scrutinized in the anti-PEG IgM mouse model. In C26 tumor-bearing mice having circulating anti-PEG IgM, at 24 h after injection almost no DXR was observed in blood and tumor, and increased DXR accumulation was observed in spleen and liver, compared to tumor-bearing mice with no circulating anti-PEG IgM. The antitumor efficacy of Doxil® was significantly compromised in the C26 tumor-bearing mice in the presence of anti-PEG IgM. These results demonstrate that the anti-PEG IgM mouse model could be a useful prognostic indicator for the therapeutic effectiveness of different formulations of PEGylated therapeutics in pre-clinical studies.


Assuntos
Lipossomos , Polietilenoglicóis , Animais , Imunoglobulina M , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Tecidual
6.
Polymers (Basel) ; 14(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35160498

RESUMO

Current advancements in the research investigations focused at using natural products to generate novel dosage forms with a potential therapeutic impact. Silymarin is a natural product obtained from the herb Silybum marianum that has been shown to have remarkable hypoglycemic activity. Owing to the low enteral absorption, instability in stomach secretion, and poor solubility of Silymarin, it was better to be produced as a topical dosage form. A three-factor, three-level Box Behnken (33 BB) design was constructed to develop 15 formulations using three independent variables (phospholipid concentration, surfactant concentration, and sonication time) and two dependent variables (encapsulation efficiency and in vitro drug release). The optimized formula was added to HPMC gel and the resulting transfersomal gel was investigated for its characteristics, in vitro, ex vivo and hypoglycemic behaviors. The pH of the Silymarin-loaded transfersomal gel was 7.05, the spreadability was 55.35 mm, and the viscosity was 6.27 Pa. Furthermore, Silymarin loaded transfersomal gel had the greatest transdermal flux (92.41 µg/cm2·h), which was much greater than all other formulations. In vivo observations revealed that Silymarin loaded transfersomal gel significantly reduced blood glucose levels, compared to either Silymarin gel or oral Silymarin suspension. The findings show that the developed transfersomal gel could be an effective carrier for Silymarin transdermal delivery.

7.
Life (Basel) ; 12(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35054507

RESUMO

Furanodienone (FDN), a major bioactive component of sesquiterpenes produced from Rhizoma Curcumae, has been repeatedly acknowledged for its intrinsic anticancer efficacy against different types of cancer. In this study, we aimed to investigate the cytotoxic potential of furanodienone against human lung cancer (NSCLC A549) cells in vitro, as well as its underlying molecular mechanisms in the induction of apoptosis. Herein, we found that FDN significantly inhibited the proliferation of A549 cells in a dose-dependent manner. In addition, treatment with FDN potentially triggered apoptosis in A549 cells via not only disrupting the nuclear morphology, but by activating capsase-9 and caspase-3 with concomitant modulation of the pro- and antiapoptotic gene expression as well. Furthermore, FDN revealed its competence in inducing cell cycle arrest at G0/G1 phase in A549 cells, which was associated with decreased expression of cyclin D1 and cyclin-dependent kinase 4 (CDK4), along with increased expression of CDK inhibitor p21Cip1. Intriguingly, FDN treatment efficiently downregulated the Wnt signaling pathway, which was correlated with increased apoptosis, as well as cell cycle arrest, in A549 cells. Collectively, FDN might represent a promising adjuvant therapy for the management of lung cancer.

8.
Pathogens ; 11(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35056005

RESUMO

Hepatitis C virus (HCV) is one of the most epidemic viral infections in the world. Three-quarters of individuals infected with HCV become chronic. As a consequence of persistent inflammation, a considerable percentage of chronic patients progress to liver fibrosis, cirrhosis, and finally hepatocellular carcinoma. Cytokines, which are particularly produced from T-helper cells, play a crucial role in immune protection against HCV and the progression of the disease as well. In this study, the role of interleukins IL-33, IL-17, and IL-25 in HCV patients and progression of disease from chronicity to hepatocellular carcinoma will be characterized in order to use them as biomarkers of disease progression. The serum levels of the tested interleukins were measured in patients suffering from chronic hepatitis C (CHC), hepatocellular carcinoma (HCC), and healthy controls (C), and their levels were correlated to the degree of liver fibrosis, liver fibrosis markers and viral load. In contrast to the IL-25 serum level, which increased in patients suffering from HCC only, the serum levels of both IL-33 and IL-17 increased significantly in those patients suffering from CHC and HCC. In addition, IL-33 serum level was found to increase by liver fibrosis progression and viral load, in contrast to both IL-17 and IL-25. Current results indicate a significant role of IL-33 in liver inflammation and fibrosis progress in CHC, whereas IL-17 and IL-25 may be used as biomarkers for the development of hepatocellular carcinoma.

9.
J Control Release ; 341: 524-532, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896447

RESUMO

Intraperitoneal (i.p) chemotherapy is an attractive approach to treat peritoneally disseminated cancers by delivering therapeutic agents directly to the peritoneal cavity where some disseminated tumors are located. Cationic liposomes (CLs) have been used as a viable delivery carrier for i.p. chemotherapy to improve the peritoneal retention of anticancer agents. However, there are no reports on the fate of CLs following i.p. administration to the peritoneal cavity in the presence of disseminated tumors. We prepared a tumor xenograft murine model of peritoneally disseminated gastric cancer by i.p. inoculation of human gastric cancer cells and followed the fate of either CLs or PEGylated CLs (PEG-CLs) after i.p. injection in the model. I.p.-injected CLs were retained in peritoneal cavity for at least 3 days post-injection as a result of clustering with ascites fluid proteins, mainly albumin, while i.p. PEG-CLs was rapidly cleared from the peritoneal cavity to the circulation within 3 h post-injection. Importantly, i.p. CLs efficiently accumulated in the targeted disseminated tumor cells, but not in other abdominal organs including liver, spleen, and kidney. The tumor selectivity upon i.p. administration of CLs may be associated with the lymphatic drainage system. A lipoplex formulation composed of CLs with short hairpin RNA (shRNA) against luciferase, a model therapeutic agent, suppressed luciferase activity in peritoneally disseminated tumors by 80%, with no cytokine secretion in serum. This suggests that i.p. CLs can efficiently deliver a therapeutic agent to peritoneally disseminated tumors with few systemic adverse events. These results suggest that i.p. treatment with CLs or non-PEGylated lipoplexes may be a promising approach for the treatment of peritoneally disseminated cancers through their ability to selectively deliver therapeutic agents to i.p. target sites with minimal systemic adverse events.


Assuntos
Antineoplásicos , Lipossomos , Animais , Antineoplásicos/uso terapêutico , Cátions , Humanos , Injeções Intraperitoneais , Camundongos , RNA Interferente Pequeno
10.
World J Diabetes ; 12(11): 1832-1855, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34888011

RESUMO

Diabetes is one of the four major non-communicable diseases, and appointed by the world health organization as the seventh leading cause of death worldwide. The scientists have turned over every rock in the corners of medical sciences in order to come up with better understanding and hence more effective treatments of diabetes. The continuous research on the subject has elucidated the role of immune disorders and inflammation as definitive factors in the trajectory of diabetes, assuring that blood glucose adjustments would result in a relief in the systemic stress leading to minimizing inflammation. On a parallel basis, microbial infections usually take advantage of immunity disorders and propagate creating a pro-inflammatory environment, all of which can be reversed by antimicrobial treatment. Standing at the crossroads between diabetes, immunity and infection, we aim in this review at projecting the interplay between immunity and diabetes, shedding the light on the overlapping playgrounds for the activity of some antimicrobial and anti-diabetic agents. Furthermore, we focused on the anti-diabetic drugs that can confer antimicrobial or anti-virulence activities.

11.
Microorganisms ; 9(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34835458

RESUMO

Serratia marcescens is an opportunistic pathogen that causes diverse nosocomial infections. S. marcescens has developed considerable resistance to different antibiotics and is equipped with an armory of virulence factors. These virulence factors are regulated in S. marcescens by an intercellular communication system termed quorum sensing (QS). Targeting bacterial virulence and QS is an interesting approach to mitigating bacterial pathogenesis and overcoming the development of resistance to antimicrobials. In this study, we aimed to evaluate the anti-virulence activities of secnidazole on a clinical isolate of S. marcescens. The effects of secnidazole at sub-inhibitory concentrations (sub-MICs) on virulence factors, swarming motility, biofilm formation, proteases, hemolysin activity, and prodigiosin production were evaluated in vitro. Secnidazole's protective activity against S. marcescens pathogenesis was assessed in vivo in mice. Furthermore, a molecular docking study was conducted to evaluate the binding ability of secnidazole to the S. marcescens SmaR QS receptor. Our findings showed that secnidazole at sub-MICs significantly reduced S. marcescens virulence factor production in vitro and diminished its pathogenesis in mice. The insilico docking study revealed a great ability of secnidazole to competitively hinder the binding of the autoinducer to the SmaR QS receptor. In conclusion, secnidazole is a promising anti-virulence agent that may be used to control infections caused by S. marcescens.

12.
Drug Deliv ; 28(1): 1626-1636, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34328806

RESUMO

Silk fibroin (SF) is a natural polymeric biomaterial that is widely adopted for the preparation of drug delivery systems. Herein, we aimed to fabricate and characterize SF nanoparticles loaded with the selective estrogen receptor modulator; tamoxifen citrate (TC-SF-NPs) and to assess their in vitro efficacy against breast cancer cell lines (MCF-7 and MDA-MB-231). TC-loaded SF-NPs were characterized for particle size, morphology, entrapment efficiency, and release profile. In addition, we examined the in vitro cytotoxicity of TC-SF-NPs against human breast cancer cell lines and evaluated the anticancer potential of TC-SF-NPs through apoptosis assay and cell cycle analysis. Drug-loaded SF-NPs showed an average particle size of 186.1 ± 5.9 nm and entrapment efficiency of 79.08%. Scanning electron microscopy (SEM) showed the nanoparticles had a spherical morphology with smooth surface. Tamoxifen release from SF-NPs exhibited a biphasic release profile with an initial burst release within the first 6 h and sustained release for 48 h. TC-SF-NPs exerted a dose-dependent cytotoxic effect against breast cancer cell lines. In addition, flow cytometry analysis revealed that cells accumulate in G0/G1 phase, with a concomitant reduction of S- and G2-M-phase cells upon treatment with TC-SF-NPs. Consequently, the potent anticancer activities of TC-SF-NPs against breast cancer cells were mainly attributed to the induction of apoptosis and cell cycle arrest. Our results indicate that SF nanoparticles may represent an attractive nontoxic nanocarrier for the delivery of anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Fibroínas/química , Nanopartículas/química , Tamoxifeno/farmacologia , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Química Farmacêutica , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Células MCF-7 , Tamanho da Partícula , Propriedades de Superfície , Tamoxifeno/administração & dosagem
13.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202080

RESUMO

Alveolar macrophages are the first line of defense against intruding pathogens and play a critical role in cancer immunology. The Toll-like receptor (TLR) family mediates an important role in recognizing and mounting an immune response against intruding microbes. TLR-9 is a member of the intracellular TLR family, which recognizes unmethylated CG motifs from the prokaryotic genome. Upon its activation, TLR-9 triggers downstream of the MyD-88-dependent transcriptional activation of NF-κB, and subsequently results in abundant inflammatory cytokines expression that induces a profound inflammatory milieu. The present exploratory investigation aimed at elucidating the potency of schizophyllan for entrapping ODN 1826 (SPG-ODN 1826)-mediated stimulation of TLR-9 in provoking an inflammatory-type response in murine alveolar macrophages. Schizophyllan (SPG), a representative of the ß-glucan family, was used in the present study as a nanovehicle for endosomal trafficking of CpG ODN 1826. TEM analysis of SPG-ODN 1826 nanovehicles revealed that the prepared nanovehicles are spherical and have an average size of about 100 nm. Interestingly, SPG-ODN 1826 nanovehicles were competent in delivering their therapeutic payload within endosomes of murine alveolar macrophage (J774A.1) cells. Exposure of these nanovehicles within LPS stimulated J774A.1, resulted in a significant provocation of reactive oxygen species (ROS) (p < 0.01) in comparison to CpG ODN 1826 alone. Moreover, the formulated nanovehicles succeeded in generating a profound Th1-based cytokine profile constituted by enhanced expression of IFN-γ (p < 0.001) and IL-1ß (p < 0.001) inflammatory cytokines. These findings clearly indicated the immunostimulatory potential of SPG-ODN 1826 nanovehicles for inducing the Th1-type phenotype, which would certainly assist in skewing M2 phenotype into the much-desired M1 type during lung cancer.


Assuntos
Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Nanoestruturas/química , Oligodesoxirribonucleotídeos/química , Sizofirano/química , Receptor Toll-Like 9/agonistas , Animais , Sobrevivência Celular , Citocinas/metabolismo , Endossomos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Ativação de Macrófagos/imunologia , Camundongos , Nanoestruturas/administração & dosagem , Nanoestruturas/ultraestrutura , Tamanho da Partícula
14.
J Control Release ; 334: 327-334, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33957196

RESUMO

Recently, there is an increasing interest in exosomes or extracellular vesicles as potential candidates for delivering RNAs, proteins, genes, and anticancer agents. Engineering of exosome properties is rapidly evolving as a means of expanding exosome applications. PEGylation of exosomes is a technique used to improve their in vivo stability, circulation half-lives, and sometimes to allow the binding targeting ligands to the exosome exterior. According to FDA guidelines for the development of PEGylated proteins, immunological responses to PEGylated molecules and particles should be examined. In this study, we prepared PEGylated exosomes and investigated the production of anti-PEG IgM antibodies after single i.v. injections in mice. In addition, we monitored blood concentrations and tumor accumulation of a second dose of PEGylated exosomes administered after the initial dose. Single injections of PEGylated exosomes in mice induced anti-PEG IgM production in a T cell-dependent manner. The anti-PEG IgM production decreased when the injection dose of PEGylated exosomes was further increased. Anti-PEG IgM induced by injection of PEGylated exosomes decreased blood concentrations of a second dose of PEGylated exosomes and suppressed their tumor accumulation in a C26 murine colorectal cancer model. Initial injection doses of either PEGylated liposomes or PEGylated ovalbumin (PEG-OVA), both of them induced anti-PEG IgM production, also decreased the blood concentration of PEGylated exosomes. Interestingly, anti-PEG IgM induced by injection of PEGylated exosomes did not affect the blood concentration of PEG-OVA. These results imply the importance of monitoring anti-PEG IgM when repeat PEGylated exosome doses are required and/or when PEGylated exosomes are used together with other PEGylated therapeutics.


Assuntos
Exossomos , Polietilenoglicóis , Animais , Imunoglobulina M , Lipossomos , Camundongos , Ovalbumina
15.
Colloids Surf B Biointerfaces ; 205: 111868, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34034223

RESUMO

Brucine (BRU) is a natural product derived from nux-vomica seeds. It is commonly used as an anti-inflammatory and anti-nociceptive drug to relieve arthritis and traumatic pain. Nevertheless, its use is significantly limited by its low aqueous solubility, as well as the gastrointestinal problems and systemic toxicity that may occur following oral administration. The goal of this study, therefore, was to formulate and evaluate a nanoemulgel formulation of BRU for enhanced topical anti-inflammatory and anti-nociceptive activities. Different formulations were developed (BRU gel, emulgel and nanoemulgel) using 1% w/w NaCMC as a gelling agent. The formulated preparations were assessed for their physical appearance, spreadability, viscosity, particle size, in vitro drug release and ex vivo permeation studies. In addition, the carrageenan-induced rat hind paw edema method was adopted to scrutinize the anti-inflammatory activity, while the hot plate method and acetic acid-induced writhing test were used to assess the anti-nociceptive activity of different formulations in male BALB/c mice. The formulated BRU-loaded preparations showed good physical characteristics. Cumulative drug release from BRU-loaded nanoemulgel was remarkably higher than that of the other formulations. Ex vivo drug permeation of the nanoemulgel formulation across rat skin showed enhanced drug permeation and higher transdermal flux as compared to BRU-loaded gel or emulgel. Most importantly, the carrageenan-induced rat hind paw edema model verified the efficient anti-inflammatory potential of BRU-loaded nanoemulgel. In addition, BRU-loaded nanoemulgel exhibited significant protective effects against thermal stimulation in the hot plate test and remarkably inhibited acetic acid-induced abdominal writhing in mice. Furthermore, a skin irritation test indicated that BRU-loaded nanoemulgel elicited neither edema nor erythema upon application to rat skin. Collectively, our results suggest that myrrh oil-based nanoemulgel might represent a promising delivery vehicle for potentiating the anti-inflammatory and anti-nociceptive actions of brucine.


Assuntos
Anti-Inflamatórios , Absorção Cutânea , Administração Cutânea , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Estricnina/análogos & derivados
16.
Pharmaceutics ; 13(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430162

RESUMO

In the present study, the objective was to attain a localized lung delivery of an anti-tubercular fluoroquinolone, moxifloxacin (MXF), targeting the alveolar macrophages through a non-invasive pulmonary route using inhalable microspheres as a dry powder inhaler approach. MXF-loaded poly (lactic-co-glycolic acid) (PLGA) microspheres (MXF-PLGA-MSs) were fabricated by solvent evaporation technique and optimized by using a central composite statistical design. The morphology and particle size, as well as the flowability of the optimized microspheres, were characterized. In addition, the aerosolization performance of the optimized formula was inspected using an Andersen cascade impactor. Furthermore, in vivo fate following intrapulmonary administration of the optimized formula was evaluated. The optimized MXF-PLGA-MSs were spherical in shape with a particle size of 3.16 µm, drug loading of 21.98% and entrapment efficiency of 78.0%. The optimized formula showed a mass median aerodynamic diameter (MMAD) of 2.85 ± 1.04 µm with a favorable fine particle fraction of 72.77 ± 1.73%, suggesting that the powders were suitable for inhalation. Most importantly, in vivo studies revealed that optimized MXF-PLGA-MSs preferentially accumulated in lung tissue as manifested by a two-fold increase in the area under the curve AUC0-24h, compared to plain drug. In addition, optimized MXF-PLGA-MS sustained drug residence in the lung for up to 24 h following inhalation, compared to plain drug. In conclusion, inhalable microspheres of MXF could be a promising therapeutic approach that might aid in the effective eradiation of tuberculosis along with improving patient adherence to the treatment.

17.
RSC Adv ; 11(24): 14871-14882, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35423983

RESUMO

In the present study, we aimed to develop a novel pH-sensitive polymeric delivery system (GG-g-PMMA) for antidiabetic therapy via grafting ghatti gum (GG) with methyl methacrylate (MMA) chains. The free radical polymerization technique was adopted to graft ghatti gum with methyl methacrylate, using ceric ammonium nitrate (CAN) as a redox initiator. The impact on grafting parameters such as grafting percentage (G%) and grafting efficiency (GE), of monomer and initiator concentrations was evaluated. The batch with higher grafting efficiency and percentage grafting was selected and characterized by elemental analysis (C, H and N), DSC, FT-IR spectroscopy, XRD, 1H-NMR and SEM morphology study. In addition, the efficacy of GG-g-PMMA-based pellets loaded with the hypoglycemic agent, metformin hydrochloride, to sustain drug release was investigated. In vitro release studies demonstrated a pH-dependent sustained release of the drug from GG-g-PMMA pellets. In addition, acute oral toxicity studies and histopathological analysis suggested the safety and biocompatibility of the grafted gum. Most importantly, in vivo efficacy studies underscored the efficient hypoglycemic potential of the prepared formulation, which was comparable to that of a sustained release marketed formulation. These results suggest that the developed pH-sensitive polymeric delivery system (GG-g-PMMA) might represent a promising delivery vehicle for facilitated antidiabetic therapy.

18.
J Control Release ; 329: 1046-1053, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33080272

RESUMO

Splenic marginal zone B (MZ-B) cells have attracted attention as alternative antigen-presenting cells. We recently developed an original delivery system, using PEGylated liposomes (PEG-Lip) to deliver antigens to MZ-B cells. In this system, to induce antigen-specific immunity, empty PEG-Lip and antigen-containing PEG-Lip were intravenously (i.v.) injected sequentially at 3 day intervals. Since complement activation by the second dose is required for the delivery of antigen-containing PEG-Lip to splenic MZ-B cells, we investigated the ability of liposomes, modified with various PEG derivatives having different functional terminal groups (methoxy PEG (CH3O-PEG), hydroxy PEG (HO-PEG) or polyglycerol (PG), to activate the complement system and deliver a model antigen, ovalbumin (OVA), to splenic MZ-B cells in vitro and in vivo. Hydroxy PEG-modified liposomes (HO-PEG-Lip) both activated the complement system in vitro, and facilitated the preferential association of HO-PEG-lip with MZ-B cells in vitro. Manipulating HO-PEG density, in particular a density of 2 mol% in total lipids, significantly enhanced the association of HO-PEG-Lip with splenic MZ-B cells in vivo. Consequently, a single i.v. injection of HO-PEG-Lip (2 mol%) containing OVA induced OVA-specific IgG response. Our immunization system with HO-PEG-Lip, achieved efficient antigen delivery to MZ-B cells after a single i.v. injection, improving on our previous immunization system. This new delivery technique may be an improved, simple, antigen delivery system to MZ-B cells that induces meaningful levels of humoral immune response.


Assuntos
Imunidade Humoral , Lipossomos , Antígenos , Ativação do Complemento , Polietilenoglicóis , Baço
19.
Drug Des Devel Ther ; 14: 5325-5336, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33293794

RESUMO

PURPOSE: The present work aimed at challenging the efficacy of natural gums, karaya and locust bean gum, as matrix-forming polymers for the formulation of sustained-release tablets of diltiazem, a model drug. METHODS: Central design composite was adopted for the formulation and optimization of tablet formulations. The two gums have been selected as independent variables. The dependent factors chosen were the amount of drug released in 1st hour (Y1), amount of drug released after 12 h (Y2), diffusion exponent (Y3), and time for half of the total drug released (T50%) (Y4). Wet granulation approach was used for the formulation of tablets. FT-IR, DSC, in vitro dissolution, swelling-erosion investigations, SEM, and stability studies were carried out. RESULTS AND DISCUSSION: It was evident that the release pattern from the prepared formulations was significantly influenced by the quantity of gum(s) in the tablet. FT-IR and DSC results confirm drug-polymer compatibility. Polynomial equations were used for the prediction of quantitative impact of independent factors at different levels on response variables. After ANOVA analysis, the significant factors were considered for constrained optimization to get the optimized formula. The optimized formula generated by the response surface methodology was evaluated both for in vitro and in vivo properties. The optimized formula and a sustained-release marketed product were subjected to in vivo studies in rabbits and the results of the t-test demonstrated insignificant variation in pharmacokinetic parameters among the two formulations, confirming that the prepared tablet showed sustained-release profile. CONCLUSION: The results indicated that karaya and locust bean gum can be effectively used to formulate sustained-release tablets.


Assuntos
Anti-Hipertensivos/farmacocinética , Produtos Biológicos/química , Diltiazem/farmacocinética , Galactanos/química , Mananas/química , Gomas Vegetais/química , Polímeros/química , Sterculia/química , Animais , Anti-Hipertensivos/química , Diltiazem/química , Liberação Controlada de Fármacos , Coelhos , Propriedades de Superfície , Comprimidos
20.
Biol Pharm Bull ; 43(9): 1393-1397, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879214

RESUMO

Protein-based therapeutics are beginning to be widely used in various clinical settings. Conjugation of polyethylene glycol (PEGylation) to protein therapeutics improves their circulation half-lives in the body. However, we and other groups observed that the initial dose of some PEGylated protein-based therapeutics may induce anti-PEG antibodies (primarily immunoglobulin M (IgM)), resulting in the accelerated clearance of a second dose. The mechanism behind the induction of anti-PEG IgM by PEGylated protein-based therapeutics is still unclear. In this study, we found that Pegfilgrastim (PEG-G-CSF, the PEGylated form of the recombinant human granulocyte colony-stimulating factor) induced anti-PEG IgM in mice when administered via either intravenous or subcutaneous administration. However, the anti-PEG IgM induction is diminished both in athymic nude mice lacking T cells and in splenectomized mice. In addition, anti-PEG IgM production was significantly diminished in the cyclophosphamide-treated mice depleted of B-cells. These results indicate that anti-PEG IgM production by Pegfilgrastim occurs in spleen in a T cell-dependent manner, which differs from anti-PEG IgM induced by PEGylated liposomes. However, B cells, both marginal zone and follicular, are essential for anti-PEG IgM production in both PEGylated preparations.


Assuntos
Filgrastim/imunologia , Imunoglobulina M/metabolismo , Baço/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Ciclofosfamida/administração & dosagem , Filgrastim/administração & dosagem , Filgrastim/química , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Injeções Intravenosas , Injeções Subcutâneas , Lipossomos , Depleção Linfocítica/métodos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Animais , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Baço/imunologia , Baço/metabolismo , Baço/cirurgia , Esplenectomia , Linfócitos T/imunologia , Timo/efeitos dos fármacos , Timo/imunologia , Timo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA