Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38063681

RESUMO

5Ni/MgO and 5Ni/γAl2O3 are pronounced in the line of cheap catalyst systems for the dry reforming of methane. However, the lower reducibility of 5Ni/MgO and the significant coke deposition over 5Ni/γAl2O3 limit their applicability as potential DRM catalysts. The mixing capacity of MgO and Al2O3 may overcome these limitations without increasing the catalyst cost. Herein, a 5Ni/xMg(100 - x)Al (x = 0, 20, 30, 60, 70, and 100 wt. %) catalyst system is prepared, investigated, and characterized with X-ray diffraction, surface area and porosity measurements, H2-temperature programmed reduction, UV-Vis-IR spectroscopy, Raman spectroscopy, thermogravimetry, and transmission electron microscopy. Upon the addition of 20 wt. % MgO into the Al2O3 support, 5Ni/20Mg80Al is expanded and carries both stable Ni sites (derived through the reduction of NiAl2O4) and a variety of CO2-interacting species. CH4 decomposition at Ni sites and the potential oxidation of carbon deposits by CO2-interacting species over 5Ni/20Mg80Al results in a higher 61% H2-yield (against ~55% H2-yield over 5Ni/γAl2O3) with an excellent carbon-resistant property. In the major magnesia support system, the 5Ni/60Mg40Al catalyst carries stable Ni sites derived from MgNiO2 and "strongly interacted NiO-species". The H2-yield over the 5Ni/60Mg40Al catalyst moves to 71%, even against a high coke deposition, indicating fine tuning between the carbon formation and diffusion rates. Ni dispersed over magnesia-alumina with weight ratios of 7/3 and 3/7 exhibit good resistance to coke. Weight ratios of 2/8 and 7/3 contain an adequate amount of reducible and CO2-interactive species responsible for producing over 60% of H2-yield. Weight ratio 6/4 has a proper coke diffusion mechanism in addition to achieving a maximum of 71% H2-yield.

2.
ChemistryOpen ; 12(9): e202300112, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37688328

RESUMO

Methane decomposition is a promising route to synthesize COx -free hydrogen and carbon nanomaterials (CNMs ). In this work, the impregnation method was employed for the preparation of the catalysts. Systematic investigations on the activity and stability of Fe-based catalysts were carried out in a packed-bed micro-activity reactor at 800 °C with a feed gas flow rate of 18 mL/min. The effect of doping Y2 O3 , MgO, SiO2 and TiO2 over ZrO2 on the catalytic performance was also studied. BET revealed that the specific surface areas and pore volumes are increased after SiO2 , TiO2 , and Y2 O3 are added to ZrO2 while MgO had a negative impact and hence a little decrease in specific surface area is observed. The catalytic activity results showed that the Fe-based catalyst supported over TiO2 -doped ZrO2 that is, Fe-TiZr, demonstrated the highest activity and stability, with a maximum methane conversion of 81.3 % during 180 min time-on-stream. At 800 °C, a maximum initial methane conversion of 73 %, 38 %, 64 %, and 69 % and a final carbon yield of 121 wt. %, 55 wt. %, 354 wt. %, and 174 wt. % was achieved using Fe-MgZr, Fe-SiZr, Fe-TiZr and Fe-YZr catalysts, respectively. Moreover, bulk deposition of uniform carbon nanotubes with a high degree of graphitization and different diameters was observed over the catalysts.

3.
ACS Omega ; 8(24): 22108-22120, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37360458

RESUMO

Hydrogen production from dry reforming of methane (DRM) not only concerns with green energy but also involves the consumption of two greenhouse gases CH4 and CO2. The lattice oxygen endowing capacity, thermostability, and efficient anchoring of Ni has brought the attention of the DRM community over the yttria-zirconia-supported Ni system (Ni/Y + Zr). Herein, Gd-promoted Ni/Y + Zr is characterized and investigated for hydrogen production through DRM. The H2-TPR → CO2-TPD → H2-TPR cyclic experiment indicates that most of the catalytic active site (Ni) remains present during the DRM reaction over all catalyst systems. Upon Y addition, the tetragonal zirconia-yttrium oxide phase stabilizes the support. Gadolinium promotional addition up to 4 wt % modifies the surface by formation of the cubic zirconium gadolinium oxide phase, limits the size of NiO, and makes reducible NiO moderately interacted species available over the catalyst surface and resists coke deposition. The 5Ni4Gd/Y + Zr catalyst shows about ∼80% yield of hydrogen constantly up to 24 h at 800 °C.

4.
ACS Omega ; 7(48): 43700-43709, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506208

RESUMO

The carbon dioxide reforming of methane has attracted attention from researchers owing to its possibility of both mitigating the hazards of reactants and producing useful chemical intermediates. In this framework, the activity of the nickel-based catalysts, supported by yttria-stabilized zirconia and promoted with holmium oxide (Ho2O3), was assessed in carbon dioxide reforming of methane at 800 °C. The catalysts were characterized by N2-physisorption, H2 temperature-programmed reduction, temperature-programmed desorption of CO2, X-ray diffraction, scanning electron microscopy (SEM) together with energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) techniques. The effect of holmium oxide weight percent loading (0.0, 1.0, 2.0, 3,0, 4.0, and 5.0 wt %) was examined owing to its impact on the developed catalysts. The optimum loading of Ho2O3 was found to be 4.0 wt %, where the methane and carbon dioxide conversions were 85 and 91%, respectively. The nitrogen adsorption-desorption isotherms specified the mesoporous aspect of the catalysts, while the SEM images displayed a morphology of agglomerated, porous particles. The TEM images of the spent catalyst displayed the formation of multiwalled carbon nanotubes. TGA of the 4.0 wt % of Ho2O3 catalyst, experimented over 7-hour time-on-stream, displayed little weight loss (<14.0 wt %) owing to carbon formation, indicating the good resistance of the catalyst to carbon accumulation due to the enhancing ability of Ho2O3 and its adjustment of the support.

5.
Environ Sci Pollut Res Int ; 26(36): 37228-37241, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31745803

RESUMO

Herein, activated carbon (AC) and carbon nanotubes (CNTs) were synthesised from potato peel waste (PPW). Different ACs were synthesised via two activation steps: firstly, with phosphoric acid (designated PP) and then using potassium hydroxide (designated PK). The AC produced after the two activation steps showed a surface area as high as 833 m2 g-1 with a pore volume of 0.44 cm3 g-1, where the raw material of PPW showed a surface area < 4 m2 g-1. This can help aid and facilitate the concept of the circular economy by effectively up-cycling and valorising waste lignocellulosic biomass such as potato peel waste to high surface area AC and subsequently, multi-walled carbon nanotubes (MWCNTs). Consequently, MWCNTs were prepared from the produced AC by mixing it with the nitrogen-based material melamine and iron precursor, iron (III) oxalate hexahydrate. This produced hydrophilic multi-wall carbon nanotubes (MWCNTs) with a water contact angle of θ = 14.97 °. Both AC and CNT materials were used in heavy metal removal (HMR) where the maximum lead absorption was observed for sample PK with a 84% removal capacity after the first hour of testing. This result signifies that the synthesis of these up-cycled materials can have applications in areas such as wastewater treatment or other conventional AC/CNT end uses with a rapid cycle time in a two-fold approach to improve the eco-friendly synthesis of such value-added products and the circular economy from a significant waste stream, i.e., PPW. Graphical abstract .


Assuntos
Carvão Vegetal/química , Metais Pesados/química , Nanotubos de Carbono/química , Solanum tuberosum , Biomassa , Hidróxidos , Metais Pesados/análise , Compostos de Potássio , Resíduos
6.
J Chem Technol Biotechnol ; 92(12): 2952-2962, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29200585

RESUMO

BACKGROUND: Methanol to dimethyl ether (MTD) is considered one of the main routes for the production of clean bio-fuel. The effect of copper loading on the catalytic performance of different phases of alumina that formed by calcination at two different temperatures was examined for the dehydration of methanol to dimethyl ether (DME). RESULTS: A range of Cu loadings of (1, 2, 4, 6, 10 and 15% Cu wt/wt) on Al2O3 calcined at 350 and 550 °C were prepared and characterized by TGA, XRD, BET, NH3-TPD, TEM, H2-TPR, SEM, EDX, XPS and DRIFT-Pyridine techniques. The prepared catalysts were used in a fixed bed reactor under reaction conditions in which the temperature ranged from 180-300 °C with weight hourly space velocity (WHSV) = 12.1 h-1. It was observed that all catalysts calcined at 550 °C (γ-Al2O3 support phase) exhibited higher activity than those calcined at 350 °C (γ-AlOOH), and this is due to the phase support change. Furthermore, the optimum Cu loading was found to be 6% Cu/γ-Al2O3 with this catalyst also showing a high degree of stability under steady state conditions and this is attributed to the enhancement in surface acidity and hydrophobicity. CONCLUSION: The addition of copper to the support improved the catalyst properties and activity. For all the copper modified catalysts, the optimum catalyst with high degree of activity and stability was 6% copper loaded on gamma alumina. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

7.
Sci Rep ; 7(1): 3593, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620223

RESUMO

A novel green preparation route to prepare nano-mesoporous γ-Al2O3 from AlCl3.6H2O derived from aluminum foil waste and designated as ACFL550 is demonstrated, which showed higher surface area, larger pore volume, stronger acidity and higher surface area compared to γ-Al2O3 that is produced from the commercial AlCl3 precursor, AC550. The produced crystalline AlCl3.6H2O and Al(NO3)3.9H2O in the first stage of the preparation method were characterized by single-crystal XRD, giving two crystal structures, a trigonal (R-3c) and monoclinic (P21/c) structure, respectively. EDX analysis showed that ACFL550 had half the chlorine content (Cl%) relative to AC550, which makes ACFL550 a promising catalyst in acid-catalysed reactions. Pure and modified ACFL550 and AC550 were applied in acid-catalysed reactions, the dehydration of methanol to dimethyl ether and the total methane oxidation reactions, respectively. It was found that ACFL550 showed higher catalytic activity than AC550. This work opens doors for the preparation of highly active and well-structured nano-mesoporous alumina catalysts/supports from aluminum foil waste and demonstrates its application in acid-catalysed reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA