Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1105006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714732

RESUMO

Chemical fertilizer overuse is a major environmental threat, critically polluting soil and water resources. An optimization of nitrogen (N) fertilizer application in winter wheat (Triticum aestivum L.) in association with various irrigation scheduling is a potential approach in this regard. A 2-year field experiment was carried out to assess the growth, yield and photosynthetic capacity of drip-irrigated winter wheat subjected to various split applications of urea (240 kg ha-1, 46% N). The eight treatments were, two irrigation scheduling and six N application modes in which, one slow-release fertilizer (SRF). Irrigation scheduling was based on the difference between actual crop evapotranspiration and precipitation (ETa-P). The two irrigation scheduling were I45 (Irrigation scheduling when ETa-P reaches 45 mm) and I30 (Irrigation scheduling when ETa-P reaches 30 mm). The six N levels were N0-100 (100% from jointing to booting), N25-75 (25% during sowing and 75% from jointing to booting), N50-50 (50% during sowing and 50% from jointing to booting), N75-25 (75% during sowing and 25% from jointing to booting), N100-0 (100% during sowing), and SRF100 (240 kg ha-1, 43% N during sowing). N top-dressing application significantly (P<0.05) influenced wheat growth, aboveground biomass (ABM), grain yield (GY) and its components, photosynthetic and chlorophyll parameters, and plant nutrient content. According to the averages of the two winter wheat-growing seasons, the I45N50-50 and I45SRF100 treatments, respectively had the highest GY (9.83 and 9.5 t ha-1), ABM (19.91 and 19.79 t ha-1), net photosynthetic rate (35.92 and 34.59 µmol m-2s-1), stomatal conductance (1.387 and 1.223 mol m-2s-1), SPAD (69.33 and 64.03), and chlorophyll fluorescence FV/FM (8.901 and 8.922). The present study provided convincing confirmation that N applied equally in splits at basal-top-dressing rates could be a desirable N application mode under drip irrigation system and could economically compete with the costly SRF for winter wheat fertilization. The I45N50-50 treatment offers to farmers an option to sustain wheat production in the NCP.

2.
Ying Yong Sheng Tai Xue Bao ; 32(11): 3961-3968, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34898112

RESUMO

Excessive nitrogen application would deteriorate soil structure and increase greenhouse gas emission. We set up six treatments, i.e., N0, N120, N180, N240, N300and N360(nitrogen application rates of 0, 120, 180, 240, 300 and 360 kg·hm-2, all straws returned into the field in situ) in the nitrogen fertilizer experimental site to investigate the effects of different nitrogen application rates on soil N2O emission, soil water-filled porosity (WFPS), soil temperature, nitrate and ammonium contents, composition and stability of water stable aggregates in winter wheat filed in 2018-2020. The results showed that there was a significant positive correlation between soil N2O emission and nitrogen application rate. There was no correlation between WFPS and nitrogen application rate. Soil temperature in the 0-10 cm layer decreased significantly with the increases of nitrogen application rates. There was a significant positive correlation between nitrate and ammonium contents and nitrogen application rate. With the increases of nitrogen application rates, the content of water stable aggregates with diameter >2 mm decreased, while that of water-stable aggregates with diameter <0.5 mm increased. The particle size of soil water-stable aggregates also decreased gradually. There was a significant negative correlation between nitrogen application rate with mean weight diameter (MWD) and geometric mean diameter, while no correlation with fractal dimension. The fitting equation between MWD and N2O emission flux was y=3928.3e-2.171x (R2=0.55, P<0.001), indicating that N2O emission increased markedly as MWD decreasing. The increases in nitrogen application rate reduced soil temperature in the 0-10 cm layer, increased nitrate and ammonium contents, decreased the average particle size of soil water stable aggregates, and the stability of soil aggregates, and increased soil N2O emission.


Assuntos
Nitrogênio , Solo , Fertilizantes , Nitrogênio/análise , Triticum , Água
3.
Front Microbiol ; 12: 789235, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970245

RESUMO

Biochar has extensively been used for multiple purposes in agriculture, including improving soil microbial biomass. The current study aimed to investigate the effect of acidic biochar on maize seedlings' rhizosphere bacterial abundance under salinity. There were seven treatments and three replicates in a controlled greenhouse coded as B0S1, B1S1, and B2S1 and B0S2, B1S2, and B2S2. CK is control (free of biochar and salt); B0, B1, and B2 are 0, 15, and 30 g biochar (kg soil)-1; and S1 and S2 are 2.5 and 5 g salt pot-1 that were amended, respectively. After harvesting the maize seedlings, the soil samples were collected and analyzed for soil microbial biomass, bacterial abundance, and diversity. The results revealed that relative abundance of Proteobacteria, Actinobacteria, and Chloroflexi increased on phylum level, whereas Actinomarinales, Alphaproteobacteria, and Streptomyces enhanced on genus level, respectively, in B2S1 and B2S2, when compared with CK and non-biochar amended soil under saline conditions. The relative abundance of Actinomarinales was positively correlated with total potassium (TK) and Gematimonadetes negatively correlated with total phosphorus (TP). Biochar addition slightly altered the Ace1, Chao1, and alpha diversity. Principal component analysis corresponded to the changes in soil bacterial community that were closely associated with biochar when compared with CK and salt-treated soils. In conclusion, acidic biochar showed an improved soil microbial community under salinity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA