Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 271: 116397, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38626522

RESUMO

In this study, a new series of Isoxazole-carboxamide derivatives were synthesized and characterized via HRMS, 1H-, 13CAPT-NMR, and MicroED. The findings revealed that nearly all of the synthesized derivatives exhibited potent inhibitory activities against both COX enzymes, with IC50 values ranging from 4.1 nM to 3.87 µM. Specifically, MYM1 demonstrated the highest efficacy among the compounds tested against the COX-1, displaying an IC50 value of 4.1 nM. The results showed that 5 compounds possess high COX-2 isozyme inhibitory effects with IC50 value in range 0.24-1.30 µM with COX-2 selectivity indexes (2.51-6.13), among these compounds MYM4 has the lowest IC50 value against COX-2, with selectivity index around 4. Intriguingly, this compound displayed significant antiproliferative effects against CaCo-2, Hep3B, and HeLa cancer cell lines, with IC50 values of 10.22, 4.84, and 1.57 µM, respectively, which was nearly comparable to that of doxorubicin. Compound MYM4 showed low cytotoxic activities on normal cell lines LX-2 and Hek293t with IC50 values 20.01 and 216.97 µM respectively, with safer values than doxorubicin. Furthermore, compound MYM4 was able to induce the apoptosis, suppress the colonization of both HeLa and HepG2 cells. Additionally, the induction of Reactive oxygen species (ROS) production could be the mechanism underlying the apoptotic effect and the cytotoxic activity of the compound. In the 3D multicellular tumor spheroid model, results revealed that MYM4 compound hampered the spheroid formation capacity of Hep3B and HeLa cancer cells. Moreover, the molecular docking of MYM4 compound revealed a high affinity for the COX2 enzyme, with energy scores (S) -7.45 kcal/mol, which were comparable to celecoxib (S) -8.40 kcal/mol. Collectively, these findings position MYM4 as a promising pharmacological candidate as COX inhibitor and anticancer agent.


Assuntos
Antineoplásicos , Proliferação de Células , Inibidores de Ciclo-Oxigenase , Ensaios de Seleção de Medicamentos Antitumorais , Isoxazóis , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Isoxazóis/farmacologia , Isoxazóis/química , Isoxazóis/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Esferoides Celulares/efeitos dos fármacos , Modelos Moleculares , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Linhagem Celular Tumoral
2.
Mycotoxin Res ; 39(3): 271-283, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37328702

RESUMO

Fumonisin B1 (FB1) poses a risk to animal and human health. Although the effects of FB1 on sphingolipid metabolism are well documented, there are limited studies covering the epigenetic modifications and early molecular alterations associated with carcinogenesis pathways caused by FB1 nephrotoxicity. The present study investigates the effects of FB1 on global DNA methylation, chromatin-modifying enzymes, and histone modification levels of the p16 gene in human kidney cells (HK-2) after 24 h exposure. An increase (2.23-fold) in the levels of 5-methylcytosine (5-mC) at 100 µmol/L was observed, a change independent from the decrease in gene expression levels of DNA methyltransferase 1 (DNMT1) at 50 and 100 µmol/L; however, DNMT3a and DNMT3b were significantly upregulated at 100 µmol/L of FB1. Dose-dependent downregulation of chromatin-modifying genes was observed after FB1 exposure. In addition, chromatin immunoprecipitation results showed that 10 µmol/L of FB1 induced a significant decrease in H3K9ac, H3K9me3 and H3K27me3 modifications of p16, while 100 µmol/L of FB1 caused a significant increase in H3K27me3 levels of p16. Taken together, the results suggest that epigenetic mechanisms might play a role in FB1 carcinogenesis through DNA methylation, and histone and chromatin modifications.


Assuntos
Cromatina , Fumonisinas , Humanos , Fumonisinas/toxicidade , Genes p16 , Código das Histonas , Histonas , Rim/metabolismo
3.
Environ Toxicol Pharmacol ; 98: 104083, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36804611

RESUMO

Perfluorooctanoic acid (PFOA) is environmentally persistent and has been classified by The International Cancer Research Agency (IARC) as a possible human pancreatic carcinogen. In this study, the epigenetic alteration, the changes in the expression levels of endoplasmic reticulum stress-related and metabolism-related genes, as well as DNA methyltransferase expression were investigated using RT-PCR and ELISA assays. PFOA induced a significant increase in the methylation ratio (5-mC%), impacted DNA methylation maintenance gene expression and decreased lipid metabolism-related genes except for PPARγ (≥ 13-fold increase). While PFOA induced the expression of ATF4 (≥ 5.41-folds), CHOP (≥ 5.41-folds) genes, it inhibited the expression of ATF6 (≥ 67.2%), GRP78 (≥ 64.3%), Elf2α (≥ 95.8%), IRE1 (≥ 95.5%), and PERK (≥ 91.7%) genes. It is thought that epigenetic mechanisms together with disruption in the glucose-lipid metabolism and changes in endoplasmic reticulum stress-related genes may play a key role in PFOA-induced pancreatic toxicity.


Assuntos
Fluorocarbonos , Metabolismo dos Lipídeos , Humanos , Estresse do Retículo Endoplasmático , Caprilatos , Apoptose
4.
Int J Toxicol ; 42(4): 345-351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36723994

RESUMO

Neonicotinoid insecticides, known for their selectivity and low mammalian toxicity, have been widely used in recent years as alternatives to organophosphate insecticides. Although neonicotinoids are generally considered to be safe, data show that they can cause harmful effects on human and environmental health. Due to the lack of information on their mechanism of toxicity, the effects of imidacloprid and thiamethoxam on DNA methylation as the most used marker for epigenetic effects were investigated in human neuroblastoma (SH-SY5Y) cells. The cells were exposed to imidacloprid and thiamethoxam in concentrations of 100, 200, and 500 µM for 24 hours, then global DNA methylation and expression of genes involved in global DNA methylation (DNMT1, DNMT3a and DNMT3b) were investigated. Global DNA methylation significantly increased after imidacloprid exposure at 100 µM, and thiamethoxam exposures at 200 µM and 500 µM (>1.5-fold). Imidacloprid significantly decreased the expression of DNMT1 and DNMT3a, whereas thiamethoxam did not cause any significant changes in the expression of DNMT genes. Our findings suggested that alteration in global DNA methylation may be involved in the toxic mechanisms of imidacloprid and thiametoxam.


Assuntos
Inseticidas , Neuroblastoma , Animais , Humanos , Tiametoxam/toxicidade , Inseticidas/toxicidade , Metilação de DNA , Oxazinas/toxicidade , Tiazóis/toxicidade , Guanidinas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Mamíferos
5.
Drug Chem Toxicol ; 46(5): 944-954, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36065904

RESUMO

Citrinin (CIT) is a mycotoxin produced as a secondary product by the genera Aspergillus, Penicillium, Monascus, and other strains. CIT has the potential for contaminating animal feed and human food such as maize, wheat, rye, barley, oats, rice, cheese, and sake. Although CIT is primarily known as a nephrotoxic mycotoxin, it also affects other organs, including the liver and bone marrow, and its mechanisms of toxicity have not been clearly elucidated. There is a further lack of studies investigating the potential for CIT-induced neurotoxicity and its mechanisms. In the current study, SH-SY5Y human neuroblastoma cell line was treated with CIT for 24 h to evaluate various toxicological endpoints, such as reactive oxygen species (ROS) production and apoptosis induction. Results indicate that CIT has an IC50 value of 250.90 µM and cell proliferation decreased significantly at 50 and 100 µM CIT concentrations. These same concentrations also caused elevated ROS production (≥34.76%), apoptosis (≥9.43-fold) and calcium ion mobilization (≥36.52%) in the cells. Results show a significant decrease in the mitochondrial membrane potential (≥86.8%). We also found that CIT significantly upregulated the expression of some genes related to oxidative stress and apoptosis, while downregulating others. These results suggest that apoptosis and oxidative stress may be involved in the mechanisms underlying CIT-induced neurotoxicity.


Assuntos
Citrinina , Neuroblastoma , Animais , Humanos , Citrinina/toxicidade , Citrinina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Estresse Oxidativo , Linhagem Celular Tumoral
6.
Rev Environ Health ; 37(1): 35-44, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33770832

RESUMO

Metal base nanoparticles are widely produced all over the world and used in many fields and products such as medicine, electronics, cosmetics, paints, ceramics, toys, kitchen utensils and toothpastes. They are able to enter the body through digestive, respiratory, and alimentary systems. These nanoparticles can also cross the blood brain barrier, enter the brain and aggregate in the hippocampus. After entering the hippocampus, they induce oxidative stress, neuro-inflammation, mitochondrial dysfunction, and gene expression alteration in hippocampal cells, which finally lead to neuronal apoptosis. Metal base nanoparticles can also affect hippocampal neurogenesis and synaptic plasticity that both of them play crucial role in memory and learning. On the one hand, hippocampal cells are severely vulnerable due to their high metabolic activity, and on the other hand, metal base nanoparticles have high potential to damage hippocampus through variety of mechanisms and affect its functions. This review discusses, in detail, nanoparticles' detrimental effects on the hippocampus in cellular, molecular and functional levels to reveal that according to the present information, which types of nanoparticles have more potential to induce hippocampal toxicity and psychiatric disorders and which types should be more evaluated in the future studies.


Assuntos
Transtornos Mentais , Nanopartículas Metálicas , Apoptose , Hipocampo/metabolismo , Humanos , Transtornos Mentais/induzido quimicamente , Transtornos Mentais/metabolismo , Neurogênese/fisiologia
7.
J Health Pollut ; 11(31): 210909, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34434601

RESUMO

BACKGROUND: Perfluorooctanoic acid (PFOA) is used in different industrial and commercial products. Research shows the presence of PFOA in home dusts, tap and surface water, and in biological samples. The International Agency for Research on Cancer (IARC) has classified PFOA as a possible carcinogen for humans. The liver is thought to be a target organ of PFOA accumulation and toxicity. OBJECTIVE: Some studies have found toxic effects on the liver and related mechanisms; however, more studies are needed to better understand PFOA - induced hepatotoxicity. METHODS: In the present study, a human hepatocarcinoma cell line was exposed to PFOA for 24 hours and cell viability, apoptosis, the oxidative system and immune response were evaluated. RESULTS: While apoptosis was the main cell death pathway at low concentration (86.5%), the necrotic cell fraction increased with higher concentrations (46.7%). Significant changes in the reactive oxygen species (5.3-folds) glutathione (GSH) (1.7-folds) and catalase (CAT) (1.4-folds) levels were observed, as well as changes to interleukin-6 (≤1.8-fold) and interleukin-8 levels (35-40%). CONCLUSIONS: In light of the data, PFOA is potentially hepatotoxic through the investigated pathways. The results represent a background for future in vivo mechanistic studies. COMPETING INTERESTS: The authors declare no competing financial interests.

8.
Nanotoxicology ; 15(7): 951-972, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34143944

RESUMO

Lanthanum nanoparticles are widely used in industry, agriculture, and biomedicine. Over 900 kg of lanthanum is annually released into the environment only in Europe, 50 times higher than the metals, mercury, and cadmium's environmental spread. Human health risk associated with long-term exposure to the abundant lanthanum nanoparticles is a concerning environmental issue. Due to lanthanum's ability to disrupt the main biological barriers and interrupt various cells' hemostasis, they seem to cause severe disruptions to various tissues. This review opens a new perspective regarding the cellular and molecular interaction of nanosized and ionic lanthanum with the possible toxicity on the nervous system and other tissues that would show lanthanum nanoparticles' potential danger to follow in toxicological science.


Assuntos
Lantânio , Nanopartículas , Humanos , Lantânio/toxicidade , Metais , Nanopartículas/toxicidade
9.
Toxicol In Vitro ; 72: 105077, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33422635

RESUMO

Perfluorooctanoic acid (PFOA) was classified as a possible carcinogen for humans (Group 2B). The in vivo studies have reported that PFOA might lead to hepatic, testicular and pancreatic toxicities and cancers. However, its mechanisms in pancreatic tissue are still unclear and insufficiently discussed. Since inflammation is the most important mechanism leading to pancreatitis and ultimately cancer, we aimed to investigate the role of inflammation in PFOA-induced pancreatic toxicity. To this end, the effect of PFOA on cell viability, apoptosis, oxidative stress and inflammatory pathways, as well as levels of trypsin and chymotrypsin were assessed in the human pancreatic cell line (PANC-1). PFOA caused cell death in concentration dependent manner (IC50 195.6 µM), apoptosis appears to be the major cell death pathway. A significant increase in trypsin and chymotrypsin levels was detected in PANC-1 cells. Oxidative stress parameters and gene expression level-related inflammation were significantly altered with PFOA exposure. These results indicate oxidative stress plays a role in PFOA-induced pancreatic toxicity and highlight the incidence of inflammation with PFOA exposure. However, this data is preliminary. Advanced in vivo and in vitro mechanistic studies should be conducted in order to better understand the inflammation-induced oxidative stress role in the toxicity of PFOA.


Assuntos
Caprilatos/toxicidade , Fluorocarbonos/toxicidade , Pâncreas/citologia , Apoptose/efeitos dos fármacos , Catalase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quimotripsina/metabolismo , Glutationa/metabolismo , Humanos , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tripsina/metabolismo
10.
Turk J Pharm Sci ; 17(4): 446-451, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32939142

RESUMO

OBJECTIVES: The superior properties of nickel oxide-nanoparticles (NiO-NPs) have led to their wide use in various fields. However, there is little comprehensive knowledge about their toxicity, especially after oral exposure. The toxic effect of NiO-NPs of mean size 15.0 nm was investigated in Caco-2 (human intestinal epithelial) cells as no study has been performed on their intestinal toxicity. MATERIALS AND METHODS: Following identification of their particle size distribution and cellular uptake potential, the risk of exposure to NiO-NPs was evaluated by cellular morphologic changes, cyto- and genotoxic potentials, oxidative damage, and apoptotic induction. RESULTS: NiO-NPs induced a 50% reduction in cell viability at 351.6 µg/mL and caused DNA damage and oxidative damage at 30-150 µg/mL. It appears that apoptosis might be a main cell death mechanism in NiO-NP-exposed intestinal cells. CONCLUSION: NiO-NPs might be hazardous to the gastrointestinal system. The results should raise concerns about using NiO-NPs in food-contact appliances and about NiO-NP-containing wastes. Further in vivo and in vitro research should be conducted to explain the specific toxicity mechanism of these particles and reduce their risk to humans.

11.
Glob Med Genet ; 7(2): 41-46, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32939514

RESUMO

Paraoxonase 1 (PON1) enzyme plays a major role in antioxidant defense and protects the cells against reactive species. The most common PON1 Q192R and L55M polymorphisms are responsible for a wide variation of PON1 activity, which showed an up to 13-fold interindividual variation among the same genotype. PON1 genotypes were evaluated with the development of pancreatitis, colorectal cancer, and hypothyroidism in a hospital-based, case-control study. Individuals with rs662 G allele had a two-fold risk of developing hypothyroidism. A weak association was found between rs854560 T allele and pancreatitis. The results were preliminary. Further studies with a larger number and detailed biochemical parameters are needed.

12.
Adv Pharm Bull ; 10(2): 213-220, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32373489

RESUMO

Purpose: The wide application of cupric oxide nanoparticles (copper (II) oxide, CuO-NPs) in various fields has increased exposure to the kind of active nanomaterials, which can cause negative effects on human and environment health. Although CuO-NPs were reported to be harmful to human, there is still a lack information related to their toxic potentials. In the present study, the toxic potentials of CuO-NPs were evaluated in the liver (HepG2 hepatocarcinoma) and intestine (Caco-2 colorectal adenocarcinoma) cells. Methods: After the characterization of particles, cellular uptake and morphological changes were determined. The potential of cytotoxic, genotoxic, oxidative and apoptotic damage was investigated with several in vitro assays. Results: The average size of the nanoparticles was 34.9 nm, about 2%-5% of the exposure dose was detected in the cells and mainly accumulated in different organelles, causing oxidative stress, cell damages, and death. The IC50 values were 10.90 and 10.04 µg/mL by MTT assay, and 12.19 and 12.06 µg/mL by neutral red uptake (NRU) assay, in HepG2 and Caco-2 cells respectively. Apoptosis assumes to the main cell death pathway; the apoptosis percentages were 52.9% in HepG2 and 45.5% in Caco-2 cells. Comet assay result shows that the highest exposure concentration (20 µg/mL) causes tail intensities about 9.6 and 41.8%, in HepG2 and Caco-2 cells, respectively. Conclusion: CuO-NPs were found to cause significant cytotoxicity, genotoxicity, and oxidative and apoptotic effects in both cell lines. Indeed, CuO-NPs could be dangerous to human health even if their toxic mechanisms should be elucidated with further studies.

13.
J Trace Elem Med Biol ; 61: 126506, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32299013

RESUMO

BACKGROUND: Boron (B) is an abundant element on earth and presents at physiological pH in the form of boric acid (BA). It has both positive and negative effects on biological systems. BA and sodium borates have been considered as being toxic to the reproduction system in animal experiments. Unfortunately, the molecular mechanism underlying the toxic effects of BA is not fully understood. METHODS: Here, we demonstrate the influence of BA on mouse TM3 Leydig cells which are male reproductive system cells targeted by BA exposure. The cytotoxicity was evaluated by MTT and NRU assays. Annexin V-FITC/PI double staining kit, mitochondria membrane potential (ΔΨm) assay kit with JC-1 and caspase-3 colorimetric assay kit were used to indicate the cell death pathway. To estimate the role of oxidative stress in BA induced toxicity, glutathione (GSH) level, catalase (CAT) and superoxide dismutase (SOD) activities were measured manually. RESULTS: The cell viability assays showed that BA was not cytotoxic within the tested concentrations up to 1000 µM. Sub-toxic concentrations were used for detecting oxidative stress status. BA exposure was significantly reduced GSH level at 1000 µM and CAT activity in a concentration-dependent manner. However, SOD activity was increased at the tested concentrations (100-1000 µM). Moreover, ΔΨm was significantly decreased at 500 and 1000 µM of BA, while caspase-3 activity was not changed apparently. CONCLUSION: These findings demonstrated that BA is not cytotoxic and apoptotic but may slightly induces oxidative stress in TM3 Leydig cells at higher concentrations.

14.
Eur J Med Chem ; 183: 111685, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31525661

RESUMO

In this study, BODIPY compounds (2, 3, 5 and 6) bearing 3,4-bis(3-pyridin-3-ylpropoxy)benzyl, 4-(3-pyridin-3-ylpropoxy)benzyl groups were synthesized for the first time and further functionalized in a Knoevenagel condensation reaction with 3,4-bis(3-pyridin-3-ylpropoxy)benzaldehyde and 4-(3-pyridin-3-ylpropoxy)benzaldehyde. The water soluble derivatives of BODIPY compounds (3a and 6a) were synthesized by treating BODIPY compounds 3 and 6 with excess iodomethane in DMF. The photochemical properties and DNA binding modes of 3a and 6a were determined using ct-DNA by UV-Vis spectrophotometer and viscometer. DNA cleavage and topoisomerases inhibition properties were studied DNA using agarose gel electrophoresis. Their topoisomerase inhibition mechanisms were investigated at molecular level and correlations with the in vitro results were searched for using molecular docking method. In addition, cytotoxicity and phototoxicity of both compounds were performed on colorectal cancer cells (HCT-116) using MTT assay for 24 h. Annexin V-FITC/PI test was performed to determine the cell death mechanism of 6a induced by irradiation. Finally, 6a-loaded liposomes (LP6a) and PLGA nanoparticles (NP6a) were prepared and their cytotoxic and phototoxic effects were evaluated by MTT assay. The results claimed that 6a had great potential as photosensitizer agent for colorectal cancer owing to its photochemical, DNA interaction and phototoxic properties.


Assuntos
Antineoplásicos , Compostos de Boro , Neoplasias Colorretais/tratamento farmacológico , Fármacos Fotossensibilizantes , Inibidores da Topoisomerase , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos de Boro/síntese química , Compostos de Boro/química , Compostos de Boro/farmacologia , Linhagem Celular Tumoral , Clivagem do DNA/efeitos dos fármacos , DNA Topoisomerases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Inibidores da Topoisomerase/síntese química , Inibidores da Topoisomerase/química , Inibidores da Topoisomerase/farmacologia , Água
15.
Toxicol In Vitro ; 55: 101-107, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30550854

RESUMO

Synthetic cannabinoids were introduced into market in early 2000s; since these "legal highs" are dramatically popular among youth, it becomes a deadly problem. Synthetic cannabinoids have high affinity to cannabinoid receptors; leading to various clinical symptoms. AKB48 (Apinaca) has been classified as a third-generation synthetic cannabinoid for the first time in 2014. The toxicity profile of AKB48 is unclear due to little information that mainly obtained from clinical and forensic cases; however, it is believed to be similar with other psychoactive substances. Thus, we aimed to investigate the possible toxicity mechanisms of AKB48 in SH-SY5Y (human bone marrow neuroblastoma) cell line. IC50 value of AKB48 was calculated as 160.91 µM by MTT assay. AKB48 treatment enhanced (≥1.2-fold) the fluorescence intensity indicating increased reactive oxygen species production; however, glutathione levels did not changed in the range of 25-200 µM exposure concentrations. Cannabinoid type-1 receptor (CB1) expression was increased ≥15-fold in the range of 25-50 µM of AKB48, while cannabinoid type-2 receptor (CB2) did not expressed in SH-SY5Y cells. Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF- α) were up-regulated with a dose-dependent manner, and the profiles were almost identical; however, mitogen-activated protein kinase 8 (MAPK 8) was only upregulated with 25 µM of AKB48 and nuclear factor kappa B (NF-ĸB) did not change. Our results should raise the concerns about the safety associated with synthetic cannabinoids uses.


Assuntos
Adamantano/análogos & derivados , Canabinoides/toxicidade , Indazóis/toxicidade , Síndromes Neurotóxicas/etiologia , Adamantano/toxicidade , Linhagem Celular Tumoral , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Interleucina-6/genética , Proteína Quinase 8 Ativada por Mitógeno/genética , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/genética
16.
Toxicol Ind Health ; 33(8): 646-654, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28595480

RESUMO

Cobalt oxide (Co3O4) nanoparticles have applications in nanomedicine and nanotechnology; therefore, any possible adverse effects require thorough investigation. The present study investigated the effects of Co3O4 nanoparticles on four different cell lines: liver, HepG2 hepatocellular carcinoma cells; lung, A549 lung carcinoma cells; gastrointestinal, Caco-2 colorectal adenocarcinoma cells; and nervous system, SH-SY5Y neuroblastoma cells. A difference was observed in cell sensitivity toward Co3O4 nanoparticles. Co3O4 nanoparticles were taken up by all the cell types. However, no cell death was observed in HepG2, Caco-2, or SH-SY5Y cells; only A549 cells showed cytotoxicity at relatively high exposure concentrations. Co3O4 nanoparticles did not induce DNA damage or apoptosis in the cell lines tested except in A549. Interestingly, Co3O4 nanoparticles induced cellular oxidative damage in all cell types except Caco-2, resulting in increased malondialdehyde and 8-hydroxydeoxyguanosine levels and decreased glutathione levels. According to our results, it could be indicated that high concentrations of Co3O4 nanoparticles affected the pulmonary system but were unlikely to affect the liver, nervous system, or gastrointestinal system. Co3O4 nanoparticles might be safely used for industrial, commercial, and nanomedical applications if dose rates are adjusted depending on the route of exposure. However, further in vivo and in vitro studies are required to confirm the safety of Co3O4 nanoparticles.


Assuntos
Cobalto/toxicidade , Nanopartículas Metálicas/toxicidade , Óxidos/toxicidade , 8-Hidroxi-2'-Desoxiguanosina , Células A549 , Apoptose/efeitos dos fármacos , Células CACO-2 , Cobalto/química , Dano ao DNA/efeitos dos fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Glutationa/metabolismo , Células Hep G2 , Humanos , Malondialdeído/metabolismo , Nanopartículas Metálicas/química , Estresse Oxidativo/efeitos dos fármacos , Óxidos/química , Espécies Reativas de Oxigênio/metabolismo
17.
Neurochem Int ; 108: 7-14, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28159626

RESUMO

Nickel oxide nanoparticles (NiO-NPs) are used in many industrial sectors including printing inks, ceramics and catalysts, and electrical and electronics industry because of their magnetic and optical properties. However, there has been still a serious lack of information about their toxicity at the cellular and molecular levels on nervous system. For that, we aimed to investigate the in vitro toxic potentials of NiO-NPs in neuronal (SH-SY5Y) cells. The particle characterisation, cellular uptake and morphological changes were determined using Transmission Electron Microscopy, dynamic light scattering and Inductively Coupled Plasma-Mass Spectrometry. Then, the cytotoxicity was evaluated by MTT and neutral red uptake assays, the genotoxicity by comet assay, the oxidative potentials by the determination of malondialdehyde, 8-hydroxy deoxyguanosine, protein carbonyl, and glutathione levels with Enzyme-Linked Immune Sorbent Assays, and the apoptotic potentials by Annexin V-FITC apoptosis detection assay with propidium iodide. According to the results, it was observed that NiO-NPs (15.0 nm ± 4.2-38.1 nm); (i) were taken up by the cells in concentration dependent manner, (ii) caused 50% inhibition in cell viability at ≥229.34 µg/mL, (iii) induced some morphological changes, (iv) induced dose-dependent DNA damage (3.2-11.0 fold) and apoptosis (80-99%), (v) significantly induced oxidative damage. In conclusion, our results support the hypothesis that NiO-NPs affect human health especially neuronal system negatively and should raise the concern about the safety associated with their applications in consumer products.


Assuntos
Apoptose/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Neurônios/efeitos dos fármacos , Níquel/toxicidade , Apoptose/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Humanos , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Difração de Raios X
18.
Turk J Pharm Sci ; 14(2): 169-173, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32454609

RESUMO

OBJECTIVES: The remarkable properties of hard magnetic cobalt ferrite nanoparticles (CoFe2O4-NPs) and their physicochemical stability lead to various applications in different industrial and medical fields. Although CoFe2O4-NPs have been reported to cause toxic effects, there is a serious lack of information concerning their effects on the kidneys. In this study, it was aimed to investigate the toxic effects of CoFe2O4-NPs on NRK-52E kidney cells. MATERIALS AND METHODS: The particle characterisation and cellular uptake were determined using transmission electron microscopy, dynamic light scattering and inductively coupled plasma-mass spectrometry. Then, the cytotoxicity was evaluated by MTT and neutral red uptake assays, the genotoxicity by comet assay, and the apoptotic potentials by Annexin V-FITC apoptosis detection assay with propidium iodide. RESULTS: After 24 h exposure to CoFe2O4-NPs (39±17 nm), it was observed they did not affect the cell viability at concentration ranging from 100 to 1000 µg/mL, but significantly induced DNA damage at concentration ≤100 µg/mL. No apoptotic or necrotic effect was observed in the exposed cells. CONCLUSION: According to the results obtained, CoFe2O4-NPs are promising for safe use in various applications. However, further in vivo studies are needed to fully understand their mechanisms of action.

19.
Biol Trace Elem Res ; 175(2): 458-465, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27411927

RESUMO

Nanoparticles have been widely used in various fields due to the superior physicochemical properties and functions. As a result, human exposure to nanoparticles increases dramatically. Previous researches have shown that nanoparticles could travel through the respiratory, digestive system, or skin into the blood and then to the secondary organs such as the brain, heart, and liver. Besides, the nanoparticle toxicity is controversial and dependent on the sensitivity of the cell type, route of exposure, and condition, as well as their characteristics. Similarly, cobalt ferrite nanoparticles (CoFe2O4-NPs) have been used in different industrial fields, and have also various application possibilities in medical and biomedical fields. CoFe2O4-NPs induce toxic responses in various organisms such as human, mice, and algae. However, there is a serious deficit of information concerning their effects on human health and the environment. We aimed to investigate the toxic effects of CoFe2O4-NPs on liver (HepG2), colon (Caco-2), lung (A549), and neuron (SH-SY5Y) cells, which reflect different exposure routes in vitro, by using various toxicological endpoints. The cytotoxicity, genotoxicity, oxidative damage, and apoptosis induction of CoFe2O4-NPs (39 ± 17 nm) were evaluated. After 24 h, the nanoparticles decreased cell viability at ≤100 µg/mL, while increasing viability at >100 µg/mL. CoFe2O4-NPs induced DNA and oxidative damage with increased malondialdehyde (MDA) and 8-hydroxy deoxyguanosine (8-OHdG) levels and decreased glutathione (GSH) levels with no change in protein carbonyl (PC) levels. CoFe2O4-NPs had apoptotic effect in HepG2 and Caco-2 cells in a concentration-dependent manner and necrotic effects on SH-SY5Y and A549 cells. Consequently, the adverse effects of CoFe2O4-NPs should raise concern about their safety in consumer products.


Assuntos
Cobalto/toxicidade , Citotoxinas/toxicidade , Dano ao DNA , Compostos Férricos/toxicidade , Nanopartículas/toxicidade , Animais , Células CACO-2 , Células Hep G2 , Humanos , Camundongos
20.
Chemosphere ; 169: 117-123, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27870932

RESUMO

Nanoparticles have been drawn attention in various fields ranging from medicine to industry because of their physicochemical properties and functions, which lead to extensive human exposure to nanoparticles. Bismuth (Bi)-based compounds have been commonly used in the industrial, cosmetic and medical applications. Although the toxicity of Bi-based compounds was studied for years, there is a serious lack of information concerning their toxicity and effects in the nanoscale on human health and environment. Therefore, we aimed to investigate the toxic effects of Bi (III) oxide (Bi2O3) nanoparticles in liver (HepG2 hepatocarcinoma cell), kidney (NRK-52E kidney epithelial cell), intestine (Caco-2 colorectal adenocarcinoma cell), and lung (A549 lung carcinoma cell) cell cultures. Bi2O3 nanoparticles (∼149.1 nm) were easily taken by all cells and showed cyto- and genotoxic effects. It was observed that the main cell death pathways were apoptosis in HepG2 and NRK-52E cells and necrosis in A549 and Caco-2 cells exposed to Bi2O3 nanoparticles. Also, the glutathione (GSH), malondialdehyde (MDA), and 8-hydroxy deoxyguanine (8-OHdG) levels were significantly changed in HepG2, NRK-52E, and Caco-2 cells, except A549 cell. The present study is the first to evaluate the toxicity of Bi2O3 nanoparticles in mammalian cells. Bi2O3 nanoparticles should be thoroughly assessed for their potential hazardous effects to human health and the results should be supported with in vivo studies to fully understand the mechanism of their toxicity.


Assuntos
Bismuto/toxicidade , Nanopartículas/toxicidade , 8-Hidroxi-2'-Desoxiguanosina , Animais , Apoptose , Células CACO-2 , Carcinoma Hepatocelular , Morte Celular , Dano ao DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Células Epiteliais , Glutationa/metabolismo , Células Hep G2 , Humanos , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA