Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Stat ; 47(7): 1235-1250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35707020

RESUMO

Clustering amino acids is one of the most challenging problems in functional and structural prediction of protein. Previous studies have proposed clusters based on measurements of physical and biochemical characteristics of the amino acids such as volume, area, hydrophilicity, polarity, hydrogen bonding, shape, and charge. These characteristics, although important, are less directly related to the protein structure compared to geometrical characteristics such as dihedral angles between amino acids. We propose using the p-value from a test of equality of dihedral-angle distributions as the basis of a distance measure for the clustering. In this novel approach, an energy test is modified to deal with bivariate angular data and the p-value is obtained via a permutation method. The results indicate that the clusters of amino acids have sensible interpretation where Glycine, Proline, and Asparagine each forms a distinct cluster. A simulation study suggests that this approach has good working characteristics to cluster amino acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA