Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(30): eabo0689, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35895817

RESUMO

Descending control from the brain to the spinal cord shapes our pain experience, ranging from powerful analgesia to extreme sensitivity. Increasing evidence from both preclinical and clinical studies points to an imbalance toward descending facilitation as a substrate of pathological pain, but the underlying mechanisms remain unknown. We used an optogenetic approach to manipulate serotonin (5-HT) neurons of the nucleus raphe magnus that project to the dorsal horn of the spinal cord. We found that 5-HT neurons exert an analgesic action in naïve mice that becomes proalgesic in an experimental model of neuropathic pain. We show that spinal KCC2 hypofunction turns this descending inhibitory control into paradoxical facilitation; KCC2 enhancers restored 5-HT-mediated descending inhibition and analgesia. Last, combining selective serotonin reuptake inhibitors (SSRIs) with a KCC2 enhancer yields effective analgesia against nerve injury-induced pain hypersensitivity. This uncovers a previously unidentified therapeutic path for SSRIs against neuropathic pain.

2.
Proc Natl Acad Sci U S A ; 119(30): e2114094119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858441

RESUMO

Clinical evidence suggests that pain hypersensitivity develops in patients with attention-deficit/hyperactivity disorder (ADHD). However, the mechanisms and neural circuits involved in these interactions remain unknown because of the paucity of studies in animal models. We previously validated a mouse model of ADHD obtained by neonatal 6-hydroxydopamine (6-OHDA) injection. Here, we have demonstrated that 6-OHDA mice exhibit a marked sensitization to thermal and mechanical stimuli, suggesting that phenotypes associated with ADHD include increased nociception. Moreover, sensitization to pathological inflammatory stimulus is amplified in 6-OHDA mice as compared to shams. In this ADHD model, spinal dorsal horn neuron hyperexcitability was observed. Furthermore, ADHD-related hyperactivity and anxiety, but not inattention and impulsivity, are worsened in persistent inflammatory conditions. By combining in vivo electrophysiology, optogenetics, and behavioral analyses, we demonstrated that anterior cingulate cortex (ACC) hyperactivity alters the ACC-posterior insula circuit and triggers changes in spinal networks that underlie nociceptive sensitization. Altogether, our results point to shared mechanisms underlying the comorbidity between ADHD and nociceptive sensitization. This interaction reinforces nociceptive sensitization and hyperactivity, suggesting that overlapping ACC circuits may be targeted to develop better treatments.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Hiperalgesia , Dor , Animais , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Modelos Animais de Doenças , Giro do Cíngulo/fisiopatologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Comportamento Impulsivo , Camundongos , Optogenética , Oxidopamina/farmacologia , Dor/induzido quimicamente , Dor/fisiopatologia , Simpatolíticos/farmacologia
3.
Neuropsychopharmacology ; 47(4): 933-943, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34764433

RESUMO

Behavioral phenotyping devices have been successfully used to build ethograms, but many aspects of behavior remain out of reach of available phenotyping systems. We now report on a novel device, which consists in an open-field platform resting on highly sensitive piezoelectric (electromechanical) pressure-sensors, with which we could detect the slightest movements (up to individual heart beats during rest) from freely moving rats and mice. The combination with video recordings and signal analysis based on time-frequency decomposition, clustering, and machine learning algorithms provided non-invasive access to previously overlooked behavioral components. The detection of shaking/shivering provided an original readout of fear, distinct from but complementary to behavioral freezing. Analyzing the dynamics of momentum in locomotion and grooming allowed to identify the signature of gait and neurodevelopmental pathological phenotypes. We believe that this device represents a significant progress and offers new opportunities for the awaited advance of behavioral phenotyping.


Assuntos
Aprendizado de Máquina , Movimento , Animais , Medo , Asseio Animal , Frequência Cardíaca , Camundongos , Ratos
4.
Int J Mol Sci ; 20(24)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817540

RESUMO

Windup, a progressive increase in spinal response to repetitive stimulations of nociceptive peripheral fibers, is a useful model to study central sensitization to pain. Windup is expressed by neurons in both the dorsal and ventral horn of the spinal cord. In juvenile rats, it has been demonstrated both in vivo and in vitro that windup depends on calcium-dependent intrinsic properties and their modulation by synaptic components. However, the involvement of these two components in the adults remains controversial. In the present study, by means of electromyographic and extracellular recordings, we show that windup in adults, in vivo, depends on a synaptic balance between excitatory N-methyl-D-aspartate (NMDA) receptors and inhibitory glycinergic receptors. We also demonstrate the involvement of L-type calcium channels in both the dorsal and ventral horn of the spinal cord. These results indicate that windup in adults is similar to juvenile rats and that windup properties are the same regardless of the spinal network, i.e., sensory or motor.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Nociceptividade , Células do Corno Posterior/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reflexo , Sinapses/metabolismo , Animais , Células do Corno Posterior/citologia , Ratos , Ratos Wistar
5.
Pain Rep ; 3(3): e660, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29922748

RESUMO

INTRODUCTION: Purinergic ionotropic P2X receptors (P2RX) are involved in normal and pathological pain transmission. Among them, P2X4 are expressed in dorsal root ganglion and in the spinal cord. Their activation during nerve injury or chronic peripheral inflammation modifies pain sensitivity that leads to the phenomenon of allodynia and hyperalgesia. OBJECTIVES: We study here, in vivo, the role of P2X4 on the excitability of dorsal horn neurons (DHNs) in naive or pathological context. METHODS: We recorded DHNs in vivo in anesthetized wild-type or P2RX4-/- mice. We measured nociceptive integration and short-term sensitization by DHNs both in naive and inflamed mice. RESULTS: Our results indicate that P2X4 alter neuronal excitability only in the pathological context of peripheral inflammation. Consequently, excitability of DHNs from inflamed P2RX4-/- mice remains similar to naive animals. CONCLUSION: These results confirm the prominent role of P2X4 in inflammatory pain context and demonstrate that P2X4 are also involved in the hyperexcitability of DHNs.

6.
Br J Pharmacol ; 175(12): 2362-2374, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28214378

RESUMO

L-type voltage-gated calcium channels are ubiquitous channels in the CNS. L-type calcium channels (LTCs) are mostly post-synaptic channels regulating neuronal firing and gene expression. They play a role in important physio-pathological processes such as learning and memory, Parkinson's disease, autism and, as recognized more recently, in the pathophysiology of pain processes. Classically, the fundamental role of these channels in cardiovascular functions has limited the use of classical molecules to treat LTC-dependent disorders. However, when applied locally in the dorsal horn of the spinal cord, the three families of LTC pharmacological blockers - dihydropyridines (nifedipine), phenylalkylamines (verapamil) and benzothiazepines (diltiazem) - proved effective in altering short-term sensitization to pain, inflammation-induced hyperexcitability and neuropathy-induced allodynia. Two subtypes of LTCs, Cav 1.2 and Cav 1.3, are expressed in the dorsal horn of the spinal cord, where Cav 1.2 channels are localized mostly in the soma and proximal dendritic shafts, and Cav 1.3 channels are more distally located in the somato-dendritic compartment. Together with their different kinetics and pharmacological properties, this spatial distribution contributes to their separate roles in shaping short- and long-term sensitization to pain. Cav 1.3 channels sustain the expression of plateau potentials, an input/output amplification phenomenon that contributes to short-term sensitization to pain such as prolonged after-discharges, dynamic receptive fields and windup. The Cav 1.2 channels support calcium influx that is crucial for the excitation-transcription coupling underlying nerve injury-induced dorsal horn hyperexcitability. These subtype-specific cellular mechanisms may have different consequences in the development and/or the maintenance of pathological pain. Recent progress in developing more specific compounds for each subunit will offer new opportunities to modulate LTCs for the treatment of pathological pain with reduced side-effects. LINKED ARTICLES: This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Nociceptividade , Medula Espinal/fisiopatologia , Animais , Humanos , Medula Espinal/metabolismo
7.
Mol Pain ; 13: 1744806917737934, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29020860

RESUMO

Abstract: The dorsal horn of the spinal cord is a crucial site for pain transmission and modulation. Dorsal horn neurons of the spinal cord express group I metabotropic glutamate receptors (group I mGluRs) that exert a complex role in nociceptive transmission. In particular, group I mGluRs promote the activation of L-type calcium channels, voltage-gated channels involved in short- and long-term sensitization to pain. In this study, we analyzed the role of group I mGluRs in spinal nociceptive transmission and the possible cooperation between these receptors and L-type calcium channels in the pathophysiology of pain transmission in the dorsal horn of the spinal cord. We demonstrate that the activation of group I mGluRs induces allodynia and L-type calcium channel-dependent increase in nociceptive field potentials following sciatic nerve stimulation. Surprisingly, in a model of persistent inflammation induced by complete Freund's adjuvant, the activation of group I mGluRs induced an analgesia and a decrease in nociceptive field potentials. Among the group I mGluRs, mGluR1 promotes the activation of L-type calcium channels and increased nociceptive transmission while mGluR5 induces the opposite through the inhibitory network. These results suggest a functional switch exists in pathological conditions that can change the action of group I mGluR agonists into possible analgesic molecules, thereby suggesting new therapeutic perspectives to treat persistent pain in inflammatory settings.


Assuntos
Hiperalgesia/fisiopatologia , Inflamação/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Masculino , Células do Corno Posterior/metabolismo , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/análise , Medula Espinal/fisiologia , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA