Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(8): 11116-11124, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38372265

RESUMO

Mixed matrix materials (MMMs) containing metal-organic framework (MOF) nanoparticles are attractive for membrane carbon capture. Particularly, adding <5 mass % MOFs in polymers dramatically increased gas permeability, far surpassing the Maxwell model's prediction. However, no sound mechanisms have been offered to explain this unusual low-loading phenomenon. Herein, we design an ideal series of MMMs containing polyethers (one of the leading polymers for CO2/N2 separation) and discrete metal-organic polyhedra (MOPs) with cage sizes of 2-5 nm. Adding 3 mass % MOP-3 in a polyether increases the CO2 permeability by 100% from 510 to 1000 Barrer at 35 °C because of the increased gas diffusivity. No discernible changes in typical physical properties governing gas transport properties are detected, such as glass transition temperature, fractional free volume, d-spacing, etc. We hypothesize that this behavior is attributed to fractal-like networks formed by highly porous MOPs, and for the first time, we validate this hypothesis using small-angle X-ray scattering analysis.

2.
Phys Chem Chem Phys ; 25(24): 16469-16482, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37306459

RESUMO

Organic ionic plastic crystals (OIPCs) are emerging candidates as safer, quasi solid-state ion conductors for various applications, especially for next-generation batteries. However, a fundamental understanding of these OIPC materials is required, particularly concerning how the choice of cation and anion can affect the electrolyte properties. Here, we report the synthesis and characterisation of a range of new morpholinium-based OIPCs and demonstrate the benefit of the ether functional group in the cation ring. Specifically, we investigate the 4-ethyl-4-methylmorpholinium [C2mmor]+ and 4-isopropyl-4-methylmorpholinium [C(i3)mmor]+ cations paired with bis(fluorosulfonyl)imide [FSI]- and bis(trifluoromethanesulfonyl)imide [TFSI]- anions. A fundamental study of the thermal behaviour and transport properties was performed using differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). The free volume within the salts has been investigated by positron annihilation lifetime spectroscopy (PALS) and the ion dynamics using solid-state nuclear magnetic resonance (NMR) analysis. Finally, the electrochemical stability window was studied using cyclic voltammetry (CV). Out of the four morpholinium salts, [C2mmor][FSI] exhibits the widest phase I range from 11 to 129 °C, which is advantageous for their application. [C(i3)mmor][FSI] displayed the highest conductivity of 1 × 10-6 S cm-1 at 30 °C, whereas the largest vacancy volume of 132 Å3 was found for [C2mmor][TFSI]. These insights into the properties of new morpholinium-based OIPCs will be important for developing new electrolytes with optimised thermal and transport properties for a range of clean energy applications.

3.
Nat Commun ; 14(1): 2161, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061522

RESUMO

Engineering different two-dimensional materials into heterostructured membranes with unique physiochemical properties and molecular sieving channels offers an effective way to design membranes for fast and selective gas molecule transport. Here we develop a simple and versatile pyro-layering approach to fabricate heterostructured membranes from boron nitride nanosheets as the main scaffold and graphene nanosheets derived from a chitosan precursor as the filler. The rearrangement of the graphene nanosheets adjoining the boron nitride nanosheets during the pyro-layering treatment forms precise in-plane slit-like nanochannels and a plane-to-plane spacing of ~3.0 Å, thereby endowing specific gas transport pathways for selective hydrogen transport. The heterostructured membrane shows a high H2 permeability of 849 Barrer, with a H2/CO2 selectivity of 290. This facile and scalable technique holds great promise for the fabrication of heterostructures as next-generation membranes for enhancing the efficiency of gas separation and purification processes.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35544409

RESUMO

It is increasingly apparent that porous liquids (PLs) have unique use cases due to the combination of ready liquid handling and their inherently high adsorption capacity. Among the PL types, those with permanent porosity are the most promising. Although Type II and III PLs have economic synthetic methods and can be made from a huge variety of metal-organic frameworks (MOFs) and solvents, these nanocomposites still need to be stable to be useful. This work aims to systematically explore the possibilities of creating PLs using different MOF modification methods. This delivered underpinning insights into the molecular-level influence between solvent and MOF on the overall nanocomposite stability. Zirconium-based metal-organic frameworks were combined with two different solvents of varying chemistry to deliver CO2 sorption capacities as high as 2.9 mmol g-1 at 10 bar. The results of the study could have far-reaching ramifications for future investigations in the PL field.

5.
Membranes (Basel) ; 11(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34940456

RESUMO

Methylcyclohexane (MCH), one of the liquid organic hydrogen carriers (LOHCs), offers a convenient way to store, transport, and supply hydrogen. Some features of MCH such as its liquid state at ambient temperature and pressure, large hydrogen storage capacity, its well-known catalytic endothermic dehydrogenation reaction and ease at which its dehydrogenated counterpart (toluene) can be hydrogenated back to MCH and make it one of the serious contenders for the development of hydrogen storage and transportation system of the future. In addition to advances on catalysts for MCH dehydrogenation and inorganic membrane for selective and efficient separation of hydrogen, there are increasing research interests on catalytic membrane reactors (CMR) that combine a catalyst and hydrogen separation membrane together in a compact system for improved efficiency because of the shift of the equilibrium dehydrogenation reaction forwarded by the continuous removal of hydrogen from the reaction mixture. Development of efficient CMRs can serve as an important step toward commercially viable hydrogen production systems. The recently demonstrated commercial MCH-TOL based hydrogen storage plant, international transportation network and compact hydrogen producing plants by Chiyoda and some other companies serves as initial successful steps toward the development of full-fledged operation of manufacturing, transportation and storage of zero carbon emission hydrogen in the future. There have been initiatives by industries in the development of compact on-board dehydrogenation plants to fuel hydrogen-powered locomotives. This review mainly focuses on recent advances in different technical aspects of catalytic dehydrogenation of MCH and some significant achievements in the commercial development of MCH-TOL based hydrogen storage, transportation and supply systems, along with the challenges and future prospects.

6.
ACS Appl Mater Interfaces ; 13(38): 46202-46212, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34528779

RESUMO

Membrane fouling has remained a major challenge limiting the wide application of membrane technology because it reduces the efficiency and shortens the lifespan of the membrane, thus increasing the operation cost. Herein we report a novel dual-function nanocomposite membrane incorporating silver-coated gold nanoparticles (Au@AgNPs) into a sulfosuccinic acid (SSA) cross-linked poly(vinyl alcohol) (PVA) membrane for a pervaporation desalination. Compared with the control PVA membrane and PVA/SSA membrane, the Au@AgNPs/PVA/SSA membrane demonstrated a higher water flux and better salt rejection as well as an enhanced antifouling property. More importantly, Au@AgNPs provided an additional function enabling a foulant detection on the membrane surface via surface-enhanced Raman spectroscopy (SERS) as Au@AgNPs could amplify the Raman signals as an SERS substrate. Distinct SERS spectra given by a fouled membrane helped to distinguish different protein foulants from their characteristic fingerprint peaks. Their fouling tendency on the membrane was also revealed by comparing the SERS intensities of mixed foulants on the membrane surface. The Au@AgNPs/PVA/SSA nanocomposite membrane presented here demonstrated the possibility of a multifunction membrane to achieve both antifouling and fouling detection, which could potentially be used in water treatment.

7.
Front Immunol ; 10: 3049, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31993058

RESUMO

Macrophages are professional phagocytes that are uniquely situated between the innate and adaptive arms of immunity with a high capacity for phagocytosis and proinflammatory cytokine production as well as antigen presentation. Phagocytosis is a critical process to eliminate microbes, apoptotic cells and other foreign particles and is accelerated by host-generated opsonins, such as antibodies and complement. Early phagocytosis studies established the paradigm that FcγR-mediated phagocytosis was more proinflammatory than Complement Receptor (CR)-mediated uptake in macrophages. Using qPCR, cytokine antibody arrays and ELISA, we revisited this research question in primary macrophages. Using qPCR we determined that CR-mediated phagocytosis increases levels of TNF-α, IL-1ß, IL-6, and MMP-9, compared to FcγR-mediated phagocytosis and control unstimulated cells. We confirmed these findings at the protein level using cytokine antibody arrays and ELISAs. We next investigated the mechanism behind upregulated cytokine production during CR-mediated phagocytosis. IκBα protein levels were reduced after phagocytosis of both IgG- and C3bi-sRBCs indicating proteolytic degradation and implicating NF-κB activation. Inhibition of NF-κB activation impacted IL-6 production during phagocytosis in macrophages. Due to the roles of calpain in IκBα and integrin degradation, we hypothesized that CR-mediated phagocytosis may utilize calpain for proinflammatory mediator enhancement. Using qPCR and cytokine antibody array analysis, we saw significant reduction of cytokine expression during CR-mediated phagocytosis following the addition of the calpain inhibitor, PD150606, compared to untreated cells. These results suggest that the upregulation of proinflammatory mediators during CR-mediated phagocytosis is potentially dependent upon calpain-mediated activation of NF-κB.


Assuntos
Citocinas/biossíntese , Macrófagos/imunologia , Fagocitose/imunologia , Receptores de Complemento/imunologia , Animais , Calpaína/imunologia , Calpaína/metabolismo , Citocinas/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , NF-kappa B/imunologia , NF-kappa B/metabolismo , Receptores de Complemento/metabolismo
8.
Langmuir ; 30(29): 8898-906, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-24979524

RESUMO

The purpose of this work was to synthesize and screen, for their effectiveness to act as T1-enhancing magnetic resonance imaging (MRI) contrast agents, a small library of nitroxide lipids incorporated into cubic-phase lipid nanoparticles (cubosomes). The most effective nitroxide lipid was then formulated into lower-toxicity lipid nanoparticles (hexosomes), and effective MR contrast was observed in the aorta and spleen of live rats in vivo. This new class of lower-toxicity lipid nanoparticles allowed for higher relaxivities on the order of those of clinically used gadolinium complexes. The new hexosome formulation presented herein was significantly lower in toxicity and higher in relaxivity than cubosome formulations previously reported by us.


Assuntos
Meios de Contraste/síntese química , Imageamento por Ressonância Magnética/métodos , Miristatos/química , Nanopartículas/química , Óxidos de Nitrogênio/química , Animais , Aorta/anatomia & histologia , Células CHO , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Eritrócitos/efeitos dos fármacos , Álcoois Graxos/química , Feminino , Glicerídeos/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/ultraestrutura , Ratos , Ratos Sprague-Dawley , Baço/anatomia & histologia
9.
Food Chem ; 141(2): 1050-4, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23790885

RESUMO

The interaction between resveratrol (Res) and sodium caseinate (Na-Cas) has been studied by measuring fluorescence quenching of the protein by resveratrol. Quenching constants were determined using Stern-Volmer equation, which suggests that both dynamic and static quenching occur between Na-Cas and Res. Binding constants for the complexation between Na-Cas and Res were determined at different temperatures. The large binding constants (3.7-5.1×10(5)M(-1)) suggest that Res has strong affinity for Na-Cas. This affinity decreases as the temperature is raised from 25 to 37°C. The binding involves both hydrogen bonding and hydrophobic interaction, as suggested by negative enthalpy change and positive entropy change for the binding reaction. The present study indicates that Na-Cas, a common food protein, may be used as a carrier of Res, a bioactive polyphenol which is insoluble in both water and oils.


Assuntos
Caseínas/química , Estilbenos/química , Cinética , Resveratrol , Temperatura , Termodinâmica
10.
Biomaterials ; 33(9): 2723-33, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22209558

RESUMO

The development of improved, low toxicity, clinically viable nanomaterials that provide MRI contrast have tremendous potential to form the basis of translatable theranostic agents. Herein we describe a class of MRI visible materials based on lyotropic liquid crystal nanoparticles loaded with a paramagnetic nitroxide lipid. These readily synthesized nanoparticles achieved enhanced proton-relaxivities on the order of clinically used gadolinium complexes such as Omniscan™ without the use of heavy metal coordination complexes. Their low toxicity, high water solubility and colloidal stability in buffer resulted in them being well tolerated in vitro and in vivo. The nanoparticles were initially screened in vitro for cytotoxicity and subsequently a defined concentration range was tested in rats to determine the maximum tolerated dose. Pharmacokinetic profiles of the candidate nanoparticles were established in vivo on IV administration to rats. The lyotropic liquid crystal nanoparticles were proven to be effective liver MRI contrast agents. We have demonstrated the effective in vivo performance of a T1 enhancing, biocompatible, colloidally stable, amphiphilic MRI contrast agent that does not contain a metal.


Assuntos
Álcoois Graxos , Cristais Líquidos/química , Imageamento por Ressonância Magnética/métodos , Metais/química , Nanopartículas , Óxidos de Nitrogênio , Animais , Células CHO , Morte Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Microscopia Crioeletrônica , Álcoois Graxos/sangue , Álcoois Graxos/química , Álcoois Graxos/farmacocinética , Células HEK293 , Humanos , Cristais Líquidos/toxicidade , Masculino , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Óxidos de Nitrogênio/sangue , Óxidos de Nitrogênio/farmacocinética , Ratos , Ratos Sprague-Dawley , Espalhamento a Baixo Ângulo , Síncrotrons , Difração de Raios X
11.
J Colloid Interface Sci ; 315(1): 330-6, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17673245

RESUMO

The formation and rheological behavior of a viscoelastic wormlike micellar solution in an aqueous solution of a mixed surfactant system of alkyl ethoxylate sulfate (AES), C(12)H(25)(OCH(2)CH(2))(3)OSO(-)(3)Na(+), and polyoxyethylene dodecyl ether, C(12)EO(3), and the unusual effect of temperature on the rheological behavior have been studied. Upon successive addition of C(12)EO(3) to the dilute micellar solution of AES, viscosity increases swiftly and reaches its peak where a viscoelastic solution with nearly Maxwellian behavior is formed. With the further addition of C(12)EO(3), viscosity decreases sharply, which is attributed to the formation of micellar joints. With increasing temperature, the extent of micellar growth increases and the viscosity maximum is achieved at a lower mixing fraction of C(12)EO(3), but the maximum viscosity attained by the system decreases. The evolution of relaxation time and network density of the viscoelastic network also suggests that with increasing temperature, enhanced micellar growth takes place, but an additional, faster relaxation mechanism becomes increasingly favorable at high concentrations of C(12)EO(3). These results can be explained in terms of the increase in free energy of hemispherical end-caps (end-cap energy) of the micelles with increasing temperature.

12.
Langmuir ; 23(10): 5324-30, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-17439164

RESUMO

Formation and rheological behavior of viscoelastic wormlike micelles in aqueous solution of a mixed system of nonionic fluorinated surfactants, perfluoroalkyl sulfonamide ethoxylate, C8F17SO2N(C3H7)(CH2CH2O)nH (abbreviated as C8F17EOn) was studied. In the water-surfactant binary system C8F17EO20 forms an isotropic micellar solution over wide concentration range (>85 wt %) at 25 degrees C. With successive addition of C8F17EO1 to the aqueous C8F17EO20 solution, viscosity of the solution increases swiftly, and a viscoelastic solution is formed. The oscillatory rheological behavior of the viscoelastic solution can be described by Maxwell model at low-frequency region, which is typical of wormlike micelles. With further addition of C8F17EO1, the viscosity decreases after a maximum and phase separation occurs. Addition of a small amount of fluorinated oils to the wormlike micellar solution disrupts the network structure and decreases the viscosity sharply. It is found that polymeric oil, PFP (F-(C3F6O)nCF2CF2COOH), decreases the viscosity more effectively than the perfluorodecalin (PFD). The difference in the effect of oil on rheological properties is explained in terms of the solubilization site of the oils in the hydrophobic interior of the cylindrical aggregates, and their ability to induce rod-sphere transition.

13.
J Phys Chem B ; 110(41): 20224-34, 2006 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17034200

RESUMO

The formation and rheological behavior of a viscoelastic wormlike micellar solution in an aqueous solution of a nonionic fluorinated surfactant, perfluoroalkyl sulfonamide ethoxylate, of structure C8F17SO2N(C3H7)(CH2CH2O)10H was studied. Temperature-induced viscosity growth is observed even at low-surfactant concentration (approximately 1 wt %), and viscosity reaches the maximum at a temperature T(eta)-max. Upon successive increases in the temperature, the viscosity decreases, and ultimately a phase separation occurs. Small-angle X-ray scattering (SAXS) measurements confirm the presence of cylindrical aggregates at low temperature, which undergo continuous one-dimensional growth with increasing temperature, and ultimately, an indication of a slight lamellarlike structural pattern is observed, which probably comes from the formation of micellar joints or branching. Such changes in the microstructure result in a decrease in the viscosity and stress-relaxation time, while the network structure is retained; the trends in the evolution of shear modulus (Go) and relaxation time (tauR) with temperature are in agreement with this. With increased surfactant concentration, the temperature corresponding to the viscosity maximum (T eta-max) in the temperature-viscosity curve shifts to lower values, and the viscosity at temperatures below or around T eta-max increases sharply. A viscoelastic solution with Maxwellian-type dynamic rheological behavior at low-shear frequency is formed, which is typical of entangled wormlike micelles. Rheological parameters, eta(o) and Go, show scaling relationships with the surfactant concentrations with exponents slightly greater than the values predicted by the living-polymer model, but the exponent of tauR is in agreement with the theory. Dynamic light-scattering measurements indicate the presence of fast relaxation modes, associated with micelles, and medium and slow modes, associated with transient networks. The disappearance of the slow mode and the predominance of the medium mode as the temperature increases support the conclusions derived from SAXS and rheometry.

14.
Adv Colloid Interface Sci ; 123-126: 401-13, 2006 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-16860768

RESUMO

Small micellar aggregates of some surfactants exhibit enormous growth in one dimension and form very long and flexible wormlike micelles. Depending on the nature of the surfactant, such micellar growth can be induced in different ways, for example by adding cosurfactants or salts. Above a system-dependent concentration of surfactant, these giant micelles are entangled to form a transient network, and exhibit viscoelastic behavior analogous to a flexible polymer solution. However, unlike polymers in solutions, wormlike micelles undergo breaking and recombination, and, therefore, exhibit complex rheological behavior. Information on the evolution of aggregate morphology can be obtained from rheological study. In this article formation of wormlike micelles and the evolution of rheological properties in different mixed surfactant systems is discussed. Besides, a brief overview on the salt-induced micellar growth in ionic surfactant systems and reverse micellar systems induced by adding certain polar additives has also been presented.

15.
J Phys Chem B ; 110(25): 12266-73, 2006 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-16800547

RESUMO

We have studied nonaqueous phase behavior and self-assemblies of monoglycerol fatty acid esters having different alkyl chain lengths in different nonpolar oils, namely, liquid paraffin (LP 70), squalane, and squalene. At lower temperatures, oil and solid surfactants do not mix at all compositions of mixing. Upon an increase in the temperature of the surfactant system, the solid melts to give isotropic single or two-liquid phases, depending on the nature of the oil and the surfactant. All monolaurin/oil systems form an isotropic single-phase liquid, but with a decreasing alkyl chain length of surfactant, they become less lipophilic and immiscible in oils. As a result, a two-phase domain is observed in the oil rich region of all monocaprylin/oil systems over a wide range of concentrations. Judging from the phase diagrams, the surfactants are the least miscible with squalane, and the order of miscibility tendency is squalene > LP 70 > squalane. With a further increase of temperature, the solubility of the surfactant in the oil increases, and the two-liquid phase transforms to an isotropic single phase. This phase transformation corresponds to the reverse of the cloud-point phenomenon observed in aqueous nonionic surfactant systems. Small-angle X-ray scattering (SAXS) measurements show the presence of reversed rodlike micelles in the isotropic single phase, and the length of the aggregates decreases with increasing temperature and increasing alkyl chain length of the surfactant. These results indicate a rod-sphere transformation with increasing lipophilicity of the surfactant and confirms the validity of Ninham's penetration model in the reversed system. An addition of a small amount of water dramatically enhances the elongation of the reverse micelles. Increasing the surfactant concentration or changing the oil from squalene to LP 70 also increases the length of the rodlike aggregates.

16.
J Colloid Interface Sci ; 301(1): 274-81, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16725148

RESUMO

Foaming properties of dilute aqueous solutions of pentaglycerol monostearate (C(18)G(5)) and pentaglycerol monooleate (C(18:1)G(5)) have been studied at 25 degrees C. The aqueous C(18)G(5) system formed highly persistent foams, which did not rupture for several days. Foamability and foam stability were increased on increasing the surfactant concentration in both C(18)G(5) and C(18:1)G(5) systems. The C(18:1)G(5)/water system showed lower foam stability compared to the C(18)G(5)/water system. Aqueous phase behavior of the C(18)G(5) and C(18:1)G(5) systems showed the dispersion of alpha-solid and L(alpha) phase respectively in water rich region at 25 degrees C. Stable foam in the C(18)G(5)/water system was mainly due to the finely dispersed small surfactant solid particles. The average particles diameter of alpha-solid and L(alpha) dispersion is found less than 1 mum and it decreases with increasing surfactant concentration. There is no appreciable difference in the particle size of the alpha-solid and L(alpha) dispersion; however, the foam stability differs largely. Foam stabilized by lamellar liquid crystal dispersion in C(18:1)G(5)/water system, is less stable compared to the foam stabilized by the surfactant solid dispersion in C(18)G(5)/water system. The foamability and foam stability of the surfactant systems show poor correlation with the dynamic surface tension properties.

17.
J Phys Chem B ; 110(2): 754-60, 2006 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-16471599

RESUMO

Upon the addition of a short EO chain nonionic surfactant, poly(oxyethylene) dodecyl ether (C12EOn), to dilute micellar solution of sodium dodecyl sulfate (SDS) above a particular concentration, a sharp increase in viscosity occurs and a highly viscoelastic micellar solution is formed. The oscillatory-shear rheological behavior of the viscoselastic solutions can be described by the Maxwell model at low shear frequency and combined Maxwell-Rouse model at high shear frequency. This property is typical of wormlike micelles entangled to form a transient network. It is found that when C12EO4 in the mixed system is replaced by C12EO3 the micellar growth occurs more effectively. However, with the further decrease in EO chain length, phase separation occurs before a viscoelastic solution is formed. As a result, the maximum zero-shear viscosity is observed at an appropriate mixing fraction of surfactant in the SDS-C12EO3 system. We also investigated the micellar growth in the mixed surfactant systems by means of small-angle X-ray scattering (SAXS). It was found from the SAXS data that the one-dimensional growth of micelles was obtained in all the SDS-C12EOn (n=0-4) aqueous solutions. In a short EO chain C12EOn system, the micelles grow faster at a low mixing fraction of nonionic surfactant.

18.
Langmuir ; 22(4): 1449-54, 2006 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-16460060

RESUMO

Phase behavior of diglycerol fatty acid esters (Qn-D, where n represents the carbon number in the alkyl chain length of amphiphile, n = 10-16) were investigated in different nonpolar oils, liquid paraffin (LP70), squalane, and squalene. There is surfactant solid at lower temperature, and the surfactant solid does not swell in oil, and the melting temperature is almost constant in a wide range of compositions. In all of the systems, a lamellar liquid crystal (L(alpha)) is formed in a concentrated region at a temperature between the solid melting temperature and the isotropic two- or single-phase regions. In the dilute regions, reverse vesicles are formed in L(alpha) + O regions. There are two liquid-phase regions above the L(alpha) present region. This two-phase boundary corresponds to the cloud-point curve of nonionic surfactant aqueous solutions. However, instead of being less soluble in water at high temperature for the cloud point, the surfactant becomes more soluble in the organic solvents at high temperature. Namely, the effect of temperature on the solubility is opposite to the clouding phenomenon. When the hydrocarbon chain of the diglycerol surfactant decreases, the two-phase region becomes wider. In the case of a fixed surfactant, the surfactant is most miscible with squalene (narrowest two-phase regions) and the order of dissolutions tendency is squalene > LP70 > squalane. These results show that the hydrophilic moiety (diglycerol group) is more insoluble in oil compared with that of a conventional poly(oxyethylene)-type nonionic surfactant. Formation of reversed rodlike micelles was confirmed by SAXS scattering curve. When the hydrocarbon chain of surfactant is short, the micellar size becomes larger. In a fixed surfactant system, the reverse micellar size increases by changing oil from squalene to LP70. A small amount of water induces a dramatic elongation of reverse micelles.

19.
J Colloid Interface Sci ; 291(1): 236-43, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16154135

RESUMO

Static and dynamic surface tension and interfacial rheological behavior of a novel anionic gemini-type surfactant without a spacer group, sodium 2,3-didodecyl-1,2,3,4-butane tetracarboxylate (GS), were investigated. Very low values for critical micelle concentration (8.9x10(-5) M) as well as equilibrium surface tension (22.7 mN m(-1)) were observed for the aqueous solutions. Dynamic surface tension (DST) is very slow and less sensitive to the surfactant concentration than the conventional monomeric surfactant, suggesting the presence of a significant adsorption barrier for GS owing to a complicated molecular structure. Presence of a small concentration of GS in sodium dodecyl sulfate (SDS) solution shows a synergistic effect to form mixed micelles and lowers the cmc considerably. This synergism between GS and SDS and slow exchange of GS between bulk and interface create a rigid air-liquid interface of the SDS-GS solution, which is reflected in a higher elasticity value for the interface of the SDS-GS solution than for the SDS solution. It has been found that the presence of a small concentration of GS in SDS solution increases the foam stability noticeably. Although the stability of the wet foam is correlated with the film elasticity, the stability of dry foam cannot be explained in terms of film elasticity alone.

20.
J Colloid Interface Sci ; 277(1): 235-42, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15276062

RESUMO

The phase behavior and microstructure of mixed nonionic surfactant systems containing poly(oxyethylene) cholesteryl ether (ChEOn, n=15 and 10), a new alkanolamide-type foam booster, dodecanoyl N -methylethanolamide (NMEA-12), and water, were investigated at 25 degrees C by means of visual observation and small-angle X-ray scattering. In the ChEO(15)/water binary system, aqueous micellar (W(m)), discontinuous cubic liquid crystal (I(1)), hexagonal (H(1)), rectangular ribbon (R(1)), lamellar (L(alpha)), and solid (S) phases are successively formed with increasing surfactant concentration. Although the R(1) phase is an intermediate phase formed in a very narrow composition range in conventional surfactant systems, its domain is unusually wider than that of H(1), which may be attributed to the packing constraint caused by the bulky cholesteric group in the lipophilic core of the aggregate. Upon addition of lipophilic NMEA-12 to the ChEO(15)/water binary system, the interfacial curvature of the aggregates decreases, and the micellar or liquid crystal phases formed in the binary system transform to the reverse micellar (O(m)) phase via the L(alpha) phase existing over a wide concentration range. The SAXS results establish an epitaxial relationship between the (11) plane of the R(1) phase and the (10) plane of the L(alpha) phase. The ChEO(10)/NMEA-12/water system shows a phase diagram of similar general appearance, except that the W(m) to R(1) phase transformation occurs via an optically anisotropic liquid crystal phase of unknown structure and the R(1) to L(alpha) phase transition occurs through a narrow intermediate defected lamellar (L(alpha)(H)) phase. The variation in the aggregate size and shape and the unit cell of the R(1) phase formed in ChEOn/NMEA-12/water systems is also discussed.


Assuntos
Amidas/química , Colesterol/análogos & derivados , Colesterol/química , Polietilenoglicóis/química , Água/química , Fenômenos Químicos , Físico-Química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA