Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 34(27)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-36947871

RESUMO

The topological surface states (TSSs) in topological insulators (TIs) offer exciting prospects for dissipationless spin transport. Common spin-based devices, such as spin valves, rely on trilayer structures in which a non-magnetic layer is sandwiched between two ferromagnetic (FM) layers. The major disadvantage of using high-quality single-crystalline TI films in this context is that a single pair of spin-momentum locked channels spans across the entire film, meaning that only a very small spin current can be pumped from one FM to the other, along the side walls of the film. On the other hand, using nanocrystalline TI films, in which the grains are large enough to avoid hybridization of the TSSs, will effectively increase the number of spin channels available for spin pumping. Here, we used an element-selective, x-ray based ferromagnetic resonance technique to demonstrate spin pumping from a FM layer at resonance through the TI layer and into the FM spin sink.

2.
Nano Lett ; 20(7): 5315-5322, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32551677

RESUMO

Magnetic doping and proximity coupling can open a band gap in a topological insulator (TI) and give rise to dissipationless quantum conduction phenomena. Here, by combining these two approaches, we demonstrate a novel TI superlattice structure that is alternately doped with transition and rare earth elements. An unexpected exchange bias effect is unambiguously confirmed in the superlattice with a large exchange bias field using magneto-transport and magneto-optical techniques. Further, the Curie temperature of the Cr-doped layers in the superlattice is found to increase by 60 K compared to a Cr-doped single-layer film. This result is supported by density-functional-theory calculations, which indicate the presence of antiferromagnetic ordering in Dy:Bi2Te3 induced by proximity coupling to Cr:Sb2Te3 at the interface. This work provides a new pathway to realizing the quantum anomalous Hall effect at elevated temperatures and axion insulator state at zero magnetic field by interface engineering in TI heterostructures.

3.
J Phys Condens Matter ; 30(6): 065801, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29337694

RESUMO

The depth-resolved chemical structure and magnetic moment of [Formula: see text], thin films grown on Si(1 1 1) have been determined using x-ray and polarized neutron reflectometry. Bulk-like magnetization is retained across the majority of the film, but reduced moments are observed within 45[Formula: see text] of the surface and in a 25[Formula: see text] substrate-interface region. The reduced moment is related to compositional changes due to oxidation and diffusion, which are further quantified by elemental profiling using electron microscopy with electron energy loss spectroscopy. The accuracy of structural and magnetic depth-profiles obtained from simultaneous modeling is discussed using different approaches with different degree of constraints on the parameters. Our approach illustrates the challenges in fitting reflectometry data from these multi-component quaternary Heusler alloy thin films.

4.
Langmuir ; 32(49): 13116-13123, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27951699

RESUMO

A heterophase method to prepare hollow and/or porous crystalline nanoparticles of metal oxides at room temperature is presented, taking cerium(IV) oxide and γ-iron(III) oxide (i.e., maghemite) as representative cases. The crystallization begins at the oil-water interface in aqueous nanodroplets of the precursor in inverse (water-in-oil) miniemulsion systems, and it may continue toward the inner part of the droplets. A poly(styrene-b-acrylic acid) block copolymer is used as a structuring agent because the ability of the carboxylic groups to bind metal ions improves the inorganic shell formation. A precipitating base is added from the continuous phase, generating hydroxide species at the interface that begin the crystallization. We analyze the effects of the synthetic parameters in terms of colloidal stability and morphology of the resulting materials. In the case of maghemite samples, the prepared dispersions of hollow particles present a distinct magnetofluidic behavior.

5.
J Phys Condens Matter ; 28(39): 395003, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27501822

RESUMO

By using first-principles calculations we show that the spin-polarization reverses its sign at atomically abrupt interfaces between the half-metallic Co2(Fe,Mn)(Al,Si) and Si(1 1 1). This unfavourable spin-electronic configuration at the Fermi-level can be completely removed by introducing a Si-Co-Si monolayer at the interface. In addition, this interfacial monolayer shifts the Fermi-level from the valence band edge close to the conduction band edge of Si. We show that such a layer is energetically favourable to exist at the interface. This was further confirmed by direct observations of CoSi2 nano-islands at the interface, by employing atomic resolution scanning transmission electron microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA