Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Euro Surveill ; 29(35)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39212058

RESUMO

The East African Community (EAC) is experiencing an unprecedented, emerging mpox outbreak since July 2024 in five of eight partner states. We highlight rapid regional response measures, initiated August 2024 coordinated by EAC: field deployment of six mobile laboratories in Burundi, Rwanda, Uganda, Tanzania, Kenya, South Sudan to high-risk areas, donation of one mobile laboratory to Democratic Republic of the Congo and genomic monkeypox virus (MPXV) surveillance support. These interventions aim to limit local mpox spread and support international containment.


Assuntos
Surtos de Doenças , Monkeypox virus , Mpox , Humanos , África Oriental/epidemiologia , Surtos de Doenças/prevenção & controle , Unidades Móveis de Saúde , Monkeypox virus/genética , Monkeypox virus/isolamento & purificação , Mpox/epidemiologia , Mpox/virologia , Vigilância da População
2.
BMC Public Health ; 24(1): 1500, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840103

RESUMO

The East African Community (EAC) grapples with many challenges in tackling infectious disease threats and antimicrobial resistance (AMR), underscoring the importance of regional and robust pathogen genomics capacities. However, a significant disparity exists among EAC Partner States in harnessing bacterial pathogen sequencing and data analysis capabilities for effective AMR surveillance and outbreak response. This study assesses the current landscape and challenges associated with pathogen next-generation sequencing (NGS) within EAC, explicitly focusing on World Health Organization (WHO) AMR-priority pathogens. The assessment adopts a comprehensive approach, integrating a questionnaire-based survey amongst National Public Health Laboratories (NPHLs) with an analysis of publicly available metadata on bacterial pathogens isolated in the EAC countries. In addition to the heavy reliance on third-party organizations for bacterial NGS, the findings reveal a significant disparity among EAC member States in leveraging bacterial pathogen sequencing and data analysis. Approximately 97% (n = 4,462) of publicly available high-quality bacterial genome assemblies of samples collected in the EAC were processed and analyzed by external organizations, mainly in Europe and North America. Tanzania led in-country sequencing efforts, followed by Kenya and Uganda. The other EAC countries had no publicly available samples or had all their samples sequenced and analyzed outside the region. Insufficient local NGS sequencing facilities, limited bioinformatics expertise, lack of adequate computing resources, and inadequate data-sharing mechanisms are among the most pressing challenges that hinder the EAC's NPHLs from effectively leveraging pathogen genomics data. These insights emphasized the need to strengthen microbial pathogen sequencing and data analysis capabilities within the EAC to empower these laboratories to conduct pathogen sequencing and data analysis independently. Substantial investments in equipment, technology, and capacity-building initiatives are crucial for supporting regional preparedness against infectious disease outbreaks and mitigating the impact of AMR burden. In addition, collaborative efforts should be developed to narrow the gap, remedy regional imbalances, and harmonize NGS data standards. Supporting regional collaboration, strengthening in-country genomics capabilities, and investing in long-term training programs will ultimately improve pathogen data generation and foster a robust NGS-driven AMR surveillance and outbreak response in the EAC, thereby supporting global health initiatives.


Assuntos
Surtos de Doenças , Genômica , Humanos , África Oriental/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala , Farmacorresistência Bacteriana/genética , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Genoma Bacteriano , População da África Oriental
3.
J Public Health Afr ; 14(6): 2309, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37680705

RESUMO

In response to the largest recorded monkeypox virus outbreak outside of endemic Central and Western Africa, the East African Community (EAC), in cooperation with the Bernhard-Nocht- Institute for Tropical Medicine, coordinated an emergency monkeypox diagnostic training for the East African Region. As of June 2022, the Democratic Republic of Congo reported a steady increase of suspected monkeypox cases, increasing the risk of spill-over into the remaining six EAC Partner States. Within the existing EAC Mobile Laboratories project, laboratory experts of the National Public Health Laboratories of the remaining six EAC Partner States (Burundi, Rwanda, Tanzania, Kenya, Uganda, and South Sudan) participated in the workshop and were trained in the reception of suspect samples, DNA extraction and diagnosis using real-time polymerase chain reaction (RT-PCR). The EAC region is now equipped with the tools to prepare and rapidly respond to any emerging monkeypox outbreak.

4.
Microbiol Spectr ; 11(3): e0489522, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37010436

RESUMO

The clinical performance of two rapid antigen tests for the diagnosis of Severe Acute Respiratory Coronavirus (SARS-CoV-2) were regionally evaluated in East African populations. Swabs were collected from 1,432 individuals from five Partner States of the East African Community (Tanzania, Uganda, Burundi, Rwanda and South Sudan). The two rapid antigen tests (Bionote NowCheck COVID-19 Ag and SD Biosensor STANDARD Q COVID-19 Ag) were evaluated against the detection of SARS-CoV-2 RNA by the Reverse Transcription PCR (RT-PCR) gold standard. Of the concordant results with both RT-PCR and rapid antigen test data (862 for Bionote and 852 for SD Biosensor), overall clinical sensitivity was 60% and 50% for the Bionote NowCheck and the SD Biosensor STANDARD Q, respectively. Stratification by viral load, including samples with RT-PCR cycle thresholds (Ct) of <25, improved sensitivity to 90% for both rapid diagnostic tests (RDTs). Overall specificity was good at 99% for both antigen tests. Taken together, the clinical performance of both Ag-RDTs in real world settings within the East African target population was lower than has been reported elsewhere and below the acceptable levels for sensitivity of >80%, as defined by the WHO. Therefore, the rapid antigen test alone should not be used for diagnosis but could be used as part of an algorithm to identify potentially infectious individuals with high viral load. IMPORTANCE Accurate diagnostic tests are essential to both support the management and containment of outbreaks, as well as inform appropriate patient care. In the case of the SARS-CoV-2 pandemic, antigen Rapid Diagnostic Tests (Ag-RDTs) played a major role in this function, enabling widespread testing by untrained individuals, both at home and within health facilities. In East Africa, a number of SARS-CoV-2 Ag-RDTs are available; however, there remains little information on their true test performance within the region, in the hands of the health workers routinely carrying out SARS-CoV-2 diagnostics. This study contributes test performance data for two commonly used SARS-CoV-2 Ag-RDTs in East Africa, which will help inform the use of these RDTs within the region.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , RNA Viral/genética , Testes de Diagnóstico Rápido , COVID-19/diagnóstico , Uganda , Teste para COVID-19
6.
BMC Med ; 19(1): 160, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34238298

RESUMO

BACKGROUND: East Africa is home to 170 million people and prone to frequent outbreaks of viral haemorrhagic fevers and various bacterial diseases. A major challenge is that epidemics mostly happen in remote areas, where infrastructure for Biosecurity Level (BSL) 3/4 laboratory capacity is not available. As samples have to be transported from the outbreak area to the National Public Health Laboratories (NPHL) in the capitals or even flown to international reference centres, diagnosis is significantly delayed and epidemics emerge. MAIN TEXT: The East African Community (EAC), an intergovernmental body of Burundi, Rwanda, Tanzania, Kenya, Uganda, and South Sudan, received 10 million € funding from the German Development Bank (KfW) to establish BSL3/4 capacity in the region. Between 2017 and 2020, the EAC in collaboration with the Bernhard-Nocht-Institute for Tropical Medicine (Germany) and the Partner Countries' Ministries of Health and their respective NPHLs, established a regional network of nine mobile BSL3/4 laboratories. These rapidly deployable laboratories allowed the region to reduce sample turn-around-time (from days to an average of 8h) at the centre of the outbreak and rapidly respond to epidemics. In the present article, the approach for implementing such a regional project is outlined and five major aspects (including recommendations) are described: (i) the overall project coordination activities through the EAC Secretariat and the Partner States, (ii) procurement of equipment, (iii) the established laboratory setup and diagnostic panels, (iv) regional training activities and capacity building of various stakeholders and (v) completed and ongoing field missions. The latter includes an EAC/WHO field simulation exercise that was conducted on the border between Tanzania and Kenya in June 2019, the support in molecular diagnosis during the Tanzanian Dengue outbreak in 2019, the participation in the Ugandan National Ebola response activities in Kisoro district along the Uganda/DRC border in Oct/Nov 2019 and the deployments of the laboratories to assist in SARS-CoV-2 diagnostics throughout the region since early 2020. CONCLUSIONS: The established EAC mobile laboratory network allows accurate and timely diagnosis of BSL3/4 pathogens in all East African countries, important for individual patient management and to effectively contain the spread of epidemic-prone diseases.


Assuntos
COVID-19/prevenção & controle , Redes Comunitárias , Dengue/epidemiologia , Doença pelo Vírus Ebola/epidemiologia , Laboratórios , Unidades Móveis de Saúde , Burundi/epidemiologia , COVID-19/terapia , Dengue/prevenção & controle , Epidemias , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/terapia , Humanos , Quênia/epidemiologia , Unidades Móveis de Saúde/economia , Saúde Pública , Ruanda/epidemiologia , SARS-CoV-2 , Sudão do Sul/epidemiologia , Tanzânia/epidemiologia , Uganda/epidemiologia
7.
Global Health ; 17(1): 49, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892773

RESUMO

BACKGROUND: The emergence of SARS-CoV-2 mutants might lead to European border closures, which impact on trade and result in serious economic losses. In April 2020, similar border closures were observed during the first SARS-CoV-2 wave in East Africa. MAIN BODY: Since 2017 the East African Community EAC together with the Bernhard-Nocht-Institute for Tropical Medicine BNITM established a mobile laboratory network integrated into the National Public Health Laboratories of the six Partner States for molecular diagnosis of viral haemorrhagic fevers and SARS-CoV-2. Since May 2020, the National Public Health Laboratories of Kenya, Rwanda, Burundi, Uganda and South Sudan deployed these mobile laboratories to their respective borders, issuing a newly developed "Electronic EAC COVID-19 Digital Certificate" to SARS-CoV-2 PCR-negative truck drivers, thus assuring regional trade. CONCLUSION: Considering the large financial damages of border closures, such a mobile laboratory network as demonstrated in East Africa is cost-effective, easy to implement and feasible. The East African Community mobile laboratory network could serve as a blueprint for Europe and other countries around the globe.


Assuntos
Teste para COVID-19 , COVID-19/prevenção & controle , Comércio/organização & administração , Laboratórios , Unidades Móveis de Saúde , Viagem/legislação & jurisprudência , África Oriental/epidemiologia , COVID-19/diagnóstico , COVID-19/epidemiologia , Europa (Continente)/epidemiologia , Humanos
8.
BMC Res Notes ; 12(1): 235, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31014391

RESUMO

OBJECTIVE: To determine the prevalence of Plasmodium falciparum multi-drug resistant gene-1 (Pfmdr-1) N86Y and D1246Y genotypes among febrile malaria outpatients attending Lira Regional Referral Hospital, Uganda. RESULTS: Overall, 92.3% (n = 48/52) and 90% (n = 45/50) of the parasites detected carried the wild type alleles 1246D and N86, respectively. Only 7.7% (n = 4/52) and 10% (n = 5/50) of these P. falciparum isolates carried the Pfmdr-1 mutant alleles 1246Y and 86Y, respectively. Our results show high prevalence of wild type alleles N86 and D1246 in P. falciparum isolates from Lira Regional Referral Hospital, which could translate to a decreased sensitivity to artemether-lumefantrine. Continued monitoring of prevalence of single nucleotide polymorphisms is warranted to timely inform malaria treatment policies and guidelines.


Assuntos
Resistência a Medicamentos/genética , Febre/epidemiologia , Malária Falciparum/epidemiologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Alelos , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Febre/tratamento farmacológico , Febre/parasitologia , Expressão Gênica , Genótipo , Hospitais , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Pacientes Ambulatoriais , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Prevalência , Uganda/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA