Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(49): 24668-24675, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31748269

RESUMO

Plants respond to insect infestation with defenses targeting insect eggs on their leaves and the feeding insects. Upon perceiving cues indicating imminent herbivory, such as damage-induced leaf odors emitted by neighboring plants, they are able to prime their defenses against feeding insects. Yet it remains unknown whether plants can amplify their defenses against insect eggs by responding to cues indicating imminent egg deposition. Here, we tested the hypothesis that a plant strengthens its defenses against insect eggs by responding to insect sex pheromones. Our study shows that preexposure of Pinus sylvestris to pine sawfly sex pheromones reduces the survival rate of subsequently laid sawfly eggs. Exposure to pheromones does not significantly affect the pine needle water content, but results in increased needle hydrogen peroxide concentrations and increased expression of defense-related pine genes such as SOD (superoxide dismutase), LOX (lipoxygenase), PAL (phenylalanine ammonia lyase), and PR-1 (pathogenesis related protein 1) after egg deposition. These results support our hypothesis that plant responses to sex pheromones emitted by an herbivorous insect can boost plant defensive responses to insect egg deposition, thus highlighting the ability of a plant to mobilize its defenses very early against an initial phase of insect attack, the egg deposition.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Himenópteros/patogenicidade , Óvulo/imunologia , Pinus sylvestris/imunologia , Atrativos Sexuais/imunologia , Animais , Feminino , Herbivoria/fisiologia , Peróxido de Hidrogênio/imunologia , Peróxido de Hidrogênio/metabolismo , Himenópteros/fisiologia , Masculino , Odorantes , Oviposição/imunologia , Pinus sylvestris/parasitologia , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Atrativos Sexuais/metabolismo
2.
Sci Rep ; 6: 18954, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26796122

RESUMO

The canker-causing fungus Seiridium cardinale is the major threat to Cupressus sempervirens worldwide. We investigated the production of terpenes by canker-resistant and susceptible cypresses inoculated with S. cardinale, the effect of these terpenes on fungal growth, and the defensive biotransformation of the terpenes conducted by the fungus. All infected trees produced de novo terpenes and strongly induced terpenic responses, but the responses were stronger in the canker-resistant than the susceptible trees. In vitro tests for the inhibition of fungal growth indicated that the terpene concentrations of resistant trees were more inhibitory than those of susceptible trees. The highly induced and de novo terpenes exhibited substantial inhibition (more than a fungicide reference) and had a high concentration-dependent inhibition, whereas the most abundant terpenes had a low concentration-dependent inhibition. S. cardinale biotransformed three terpenes and was capable of detoxifying them even outside the fungal mycelium, in its immediate surrounding environment. Our results thus indicated that terpenes were key defences efficiently used by C. sempervirens, but also that S. cardinale is ready for the battle.


Assuntos
Ascomicetos/fisiologia , Cupressus/microbiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Terpenos/metabolismo , Ascomicetos/crescimento & desenvolvimento , Biotransformação , Resistência à Doença , Floema/metabolismo
3.
J Chem Ecol ; 41(3): 224-43, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25740205

RESUMO

Seiridium cardinale, the main fungal pathogen responsible for cypress bark canker, is the largest threat to cypresses worldwide. The terpene response of canker-resistant clones of Italian cypress, Cupressus sempervirens, to two differently aggressive isolates of S. cardinale was studied. Phloem terpene concentrations, foliar terpene concentrations, as well as foliar terpene emission rates were analyzed 1, 10, 30, and 90 days after artificial inoculation with fungal isolates. The phloem surrounding the inoculation point exhibited de novo production of four oxygenated monoterpenes and two unidentified terpenes. The concentrations of several constitutive mono- and diterpenes increased strongly (especially α-thujene, sabinene, terpinolene, terpinen-4-ol, oxygenated monoterpenes, manool, and two unidentified diterpenes) as the infection progressed. The proportion of minor terpenes in the infected cypresses increased markedly from the first day after inoculation (from 10% in the control to 30-50% in the infected treatments). Foliar concentrations showed no clear trend, but emission rates peaked at day 10 in infected trees, with higher δ-3-carene (15-fold) and total monoterpene (10-fold) emissions than the control. No substantial differences were found among cypresses infected by the two fungal isolates. These results suggest that cypresses activate several direct and indirect chemical defense mechanisms after infection by S. cardinale.


Assuntos
Cupressus/metabolismo , Cupressus/microbiologia , Doenças das Plantas/microbiologia , Terpenos/metabolismo , Xylariales/fisiologia , Cupressus/imunologia , Resistência à Doença , Floema/metabolismo , Floema/microbiologia
4.
Environ Monit Assess ; 185(1): 615-29, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22488659

RESUMO

The biomonitors Hypnum cupressiforme and Xanthoria parietina were used to assess the deposition of trace elements and their possible origin in the Prades Mountains, a protected Mediterranean forest area of NE Spain with several pollution sources nearby. Al, As, Cd, Co, Cu, Cr, Ni, Pb, Sb, Ti, V, and Zn were determined in 16 locations within this protected area. Soil trace element concentrations were also ascertained to calculate enrichment factors (EF) and use them to distinguish airborne from soilborne trace element inputs. In addition, lichen richness was measured to further assess atmospheric pollution. EF demonstrated to be useful not only for the moss but also for the lichen. Cd, Cr, Cu, Ni, and Zn presented values higher than three in both biomonitors. These trace elements were also the main ones emitted by the potential sources of pollutants. The distance between sampling locations and potential pollution sources was correlated with the concentrations of Cu, Sb, and Zn in the moss and with Cr, Ni, and Sb in the lichen. Lichen richness was negatively correlated with lichen Cu, Pb, and V concentrations on dry weight basis. The study reflected the remarkable influence that the pollution sources have on the presence of trace elements and on lichen species community composition in this natural area. The study highlights the value of combining the use of biomonitors, enrichment factors, and lichen diversity for pollution assessment to reach a better overview of both trace elements' impact and the localization of their sources.


Assuntos
Poluentes Atmosféricos/análise , Briófitas/química , Líquens/química , Poluentes do Solo/análise , Oligoelementos/análise , Poluição do Ar/estatística & dados numéricos , Atmosfera/química , Monitoramento Ambiental/métodos , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA