Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxid Redox Signal ; 40(7-9): 510-541, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37382416

RESUMO

Significance: Hydroxycinnamic acids (HCAs) are the main phenolic acids in the western diet. Harmonizing the available information on the absorption, distribution, metabolism, and excretion (ADME) of HCAs is fundamental to unraveling the compounds responsible for their health effects. This work systematically assessed pharmacokinetics, including urinary recovery, and bioavailability of HCAs and their metabolites, based on literature reports. Recent Advances: Forty-seven intervention studies with coffee, berries, herbs, cereals, tomato, orange, grape products, and pure compounds, as well as other sources yielding HCA metabolites, were included. Up to 105 HCA metabolites were collected, mainly acyl-quinic and C6-C3 cinnamic acids. C6-C3 cinnamic acids, such as caffeic and ferulic acid, reached the highest blood concentrations (maximum plasma concentration [Cmax] = 423 nM), with time to reach Cmax (Tmax) values ranging from 2.7 to 4.2 h. These compounds were excreted in urine in higher amounts than their phenylpropanoic acid derivatives (4% and 1% of intake, respectively), but both in a lower percentage than hydroxybenzene catabolites (11%). Data accounted for 16 and 18 main urinary and blood HCA metabolites, which were moderately bioavailable in humans (collectively 25%). Critical Issues: A relevant variability emerged. It was not possible to unequivocally assess the bioavailability of HCAs from each ingested source, and data from some plant based-foods were absent or inconsistent. Future Directions: A comprehensive study investigating the ADME of HCAs derived from their most important dietary sources is urgently required. Eight key metabolites were identified and reached interesting plasma Cmax concentrations and urinary recoveries, opening up new perspectives to evaluate their bioactivity at physiological concentrations. Antioxid. Redox Signal. 40, 510-541.


Assuntos
Cinamatos , Ácidos Cumáricos , Humanos , Ácidos Cumáricos/farmacocinética , Disponibilidade Biológica , Cinamatos/farmacocinética , Cinamatos/urina , Café/metabolismo
2.
Nutrients ; 15(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36986155

RESUMO

In the last decade, most of the evidence on the clinical benefits of including cruciferous foods in the diet has been focused on the content of glucosinolates (GSL) and their corresponding isothiocyanates (ITC), and mercapturic acid pathway metabolites, based on their capacity to modulate clinical, biochemical, and molecular parameters. The present systematic review summarizes findings of human studies regarding the metabolism and bioavailability of GSL and ITC, providing a comprehensive analysis that will help guide future research studies and facilitate the consultation of the latest advances in this booming and less profusely researched area of GSL for food and health. The literature search was carried out in Scopus, PubMed and the Web of Science, under the criteria of including publications centered on human subjects and the use of Brassicaceae foods in different formulations (including extracts, beverages, and tablets), as significant sources of bioactive compounds, in different types of subjects, and against certain diseases. Twenty-eight human intervention studies met inclusion criteria, which were classified into three groups depending on the dietary source. This review summarizes recent studies that provided interesting contributions, but also uncovered the many potential venues for future research on the benefits of consuming cruciferous foods in our health and well-being. The research will continue to support the inclusion of GSL-rich foods and products for multiple preventive and active programs in nutrition and well-being.


Assuntos
Brassicaceae , Glucosinolatos , Humanos , Disponibilidade Biológica , Brassicaceae/química , Dieta , Isotiocianatos/metabolismo , Verduras/química
3.
Mol Aspects Med ; 89: 101146, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36207170

RESUMO

This systematic review summarizes findings from human studies investigating the different routes of absorption, metabolism, distribution and excretion (ADME) of dietary flavan-3-ols and their circulating metabolites in healthy subjects. Literature searches were performed in PubMed, Scopus and the Web of Science. Human intervention studies using single and/or multiple intake of flavan-3-ols from food, extracts, and pure compounds were included. Forty-nine human intervention studies met inclusion criteria. Up to 180 metabolites were quantified from blood and urine samples following intake of flavan-3-ols, mainly as phase 2 conjugates of microbial catabolites (n = 97), with phenyl-γ-valerolactones being the most representative ones (n = 34). Phase 2 conjugates of monomers and phenyl-γ-valerolactones, the main compounds in both plasma and urine, reached two peak plasma concentrations (Cmax) of 260 and 88 nmol/L at 1.8 and 5.3 h (Tmax) after flavan-3-ol intake. They contributed to the bioavailability of flavan-3-ols for over 20%. Mean bioavailability for flavan-3-ols was moderate (31 ± 23%, n bioavailability values = 20), and it seems to be scarcely affected by the amount of ingested compounds. While intra- and inter-source differences in flavan-3-ol bioavailability emerged, mean flavan-3-ol bioavailability was 82% (n = 1) and 63% (n = 2) after (-)-epicatechin and nut (hazelnuts, almonds) intake, respectively, followed by 25% after consumption of tea (n = 7), cocoa (n = 5), apples (n = 3) and grape (n = 2). This highlights the need to better clarify the metabolic yield with which monomer flavan-3-ols and proanthocyanidins are metabolized in humans. This work clarified in a comprehensive way for the first time the ADME of a (poly)phenol family, highlighting the pool of circulating compounds that might be determinants of the putative beneficial effects linked to flavan-3-ol intake. Lastly, methodological inputs for implementing well-designed human and experimental model studies were provided.


Assuntos
Catequina , Proantocianidinas , Humanos , Disponibilidade Biológica , Catequina/metabolismo , Dieta
4.
Tunis Med ; 100(1): 60-65, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35822334

RESUMO

INTRODUCTION: Factor XI deficiency is a rare coagulation disorder with variable bleeding manifestations. AIM: To evaluate the correlation between the degree of factorXI deficiency and the clinical expression of the disease. METHODS: Retrospective study, spanning 10 years from January 1, 2010 to December 31, 2019, concerning patients followed at the Hemophilia Center at Aziza Othmana Hospital in Tunis. The data were collected from the medical records. The determination of PT, APTT, fibrinogen level and coagulation factors are performed by coagulometric technique on STA® compact / ACL TOP®. FactorXI deficiency was confirmed on two different samples. Statistical analysis of the clinical-biological correlation was performed using the chi-square test. The significance level was 0.05. RESULTS: Twenty patients were collected. The mean age of discovery was 25 years with a sex ratio (M/F) =0.33. The circumstances of discovery were incidental in 14 patients. A family history of bleeding was reported in 30% of cases. Eight patients underwent surgery, six of whom had a simple postoperative course. The APTT was prolonged and isolated in 75% of cases. The hemostasis test was normal in 5 cases. The average FactorXI level was 24%. The tendency to bleed did not seem to be correlated with FactorXI levels. CONCLUSION: Prospective multicenter studies including molecular study would be necessary to better elucidate this rare disorder.


Assuntos
Deficiência do Fator XI , Adulto , Deficiência do Fator XI/complicações , Deficiência do Fator XI/diagnóstico , Deficiência do Fator XI/epidemiologia , Hemorragia , Humanos , Prontuários Médicos , Estudos Prospectivos , Estudos Retrospectivos
5.
J Am Nutr Assoc ; 41(3): 240-249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33565922

RESUMO

Background: Rosmarinus officinalis L.is traditionally used as an infusion in the treatment of several diseases and in particular against neuropsychiatric disorders, such as anxiety and depression. It was established that rosemary extracts show an antidepressant effect on animal models. However, to the best of our knowledge, there is no scientific data that highlights the therapeutic effects of rosemary intake on human mental health.Aim: This study investigated whether rosemary tea consumption affects the plasma levels of anxiety and depression biomarkers in healthy volunteers.Methods: Twenty-two healthy volunteers aged between 20 and 50 years old consumed rosemary tea prepared from 5 g of dried rosemary in 100 mL boiled water once a day for 10 days. Plasma concentrations of Brain-Derived Neurotrophic Factor (BDNF), Interleukine-6 (IL-6), Interleukine-4 (IL-4), Tumor Necrosis Factor- alpha (TNF-α), Interferon-gamma (IFNϒ), and cortisol were measured by enzyme-linked immunosorbent assay using commercial ELISA kits (R&D systems) before rosemary consumption and at the end of the experiment.Results: Rosemary tea consumption significantly increased the concentration of BDNF([BDNF]D0 = 22363.86 ± 12987.66 pg/mL, [BDNF]D10 = 41803.64 ± 28109.19, p = 0.006) and TNF-α([TNF-α] D0 = 39.49 ± 14.44 pg/mL, [TNF-α] D10 = 56.24 ± 39.01, p = 0.016). However, a slight variation that was statistically non-significant in INFϒ, cortisol, IL-4, IL-6 levels and in the ratio IL-4/INFϒ was observed (p > 0.05).Conclusion: Our findings highlight the promising anxiolytic and/or antidepressant effects of rosemary tea consumption in healthy volunteers since it increases the level of the most reliable depression biomarker BDNF. However, more powerful studies with larger sample size, carefully-chosen target population and, an extended intervention period are required.


Assuntos
Rosmarinus , Animais , Antidepressivos/uso terapêutico , Ansiedade/tratamento farmacológico , Biomarcadores , Fator Neurotrófico Derivado do Encéfalo , Depressão/tratamento farmacológico , Voluntários Saudáveis , Humanos , Hidrocortisona , Interleucina-4 , Interleucina-6 , Projetos Piloto , Chá , Fator de Necrose Tumoral alfa
7.
Front Cell Dev Biol ; 9: 753279, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790666

RESUMO

Luteolin is a natural flavone with neurotrophic effects observed on different neuronal cell lines. In the present study, we aimed to assess the effect of luteolin on hNSCs fate determination and the LPS-induced neuroinflammation in a mouse model of depression with astrocytogenesis defect. hNSCs were cultured in basal cell culture medium (control) or medium supplemented with luteolin or AICAR, a known inducer of astrogenesis. A whole-genome transcriptomic analysis showed that luteolin upregulated the expressions of genes related to neurotrophin, dopaminergic, hippo, and Wnt signaling pathways, and downregulated the genes involved in p53, TNF, FOXO, and Notch signaling pathways. We also found that astrocyte-specific gene GFAP, as well as other genes of the key signaling pathways involved in astrogenesis such as Wnt, BMP, and JAK-STAT pathways were upregulated in luteolin-treated hNSCs. On the other hand, neurogenesis and oligodendrogenesis-related genes, TUBB3, NEUROD 1 and 6, and MBP, were downregulated in luteolin-treated hNSCs. Furthermore, immunostaining showed that percentages of GFAP+ cells were significantly higher in luteolin- and AICAR-treated hNSCs compared to control hNSCs. Additionally, RT-qPCR results showed that luteolin upregulated the expressions of GFAP, BMP2, and STAT3, whereas the expression of TUBB3 remained unchanged. Next, we evaluated the effects of luteolin in LPS-induced mice model of depression that represents defects in astrocytogenesis. We found that oral administration of luteolin (10 mg/Kg) for eight consecutive days could decrease the immobility time on tail suspension test, a mouse behavioral test measuring depression-like behavior, and attenuate LPS-induced inflammatory responses by significantly decreasing IL-6 production in mice brain-derived astrocytes and serum, and TNFα and corticosterone levels in serum. Luteolin treatment also significantly increased mature BDNF, dopamine, and noradrenaline levels in the hypothalamus of LPS-induced depression mice. Though the behavioral effects of luteolin did not reach statistical significance, global gene expression analyses of mice hippocampus and brain-derived NSCs highlighted the modulatory effects of luteolin on different signaling pathways involved in the pathophysiology of depression. Altogether, our findings suggest an astrocytogenic potential of luteolin and its possible therapeutic benefits in neuroinflammatory and neurodegenerative diseases. However, further studies are required to identify the specific mechanism of action of luteolin.

8.
Food Res Int ; 139: 109815, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33509454

RESUMO

Rosmarinus officinalis L. is a widespread aromatic plant commonly consumed as a tea in traditional cuisine and in folk medicine to treat various illnesses due to its therapeutic properties. To the best of our knowledge, there are no reports on the bioavailability and metabolism of R. officinalis tea polyphenols in humans. This study was aimed at assessing the bioavailability and nutrikinetics of R. officinalis phenolic compounds in healthy humans for the first time. Forty-eight compounds were identified in plasma and urine. Few un-metabolized compounds were detected since rosemary polyphenols were extensively metabolized into phase II conjugates, with rapid appearance and clearance in plasma, pointing to small intestinal absorption. Phase II derivatives of caffeic acid showed kinetics compatible with both intestinal and colonic hydrolysis of rosmarinic acid yielding free caffeic and 3,4-dihydroxyphenyl-lactic acids, which were absorbed and metabolized into phase II derivatives. These metabolites, along with reduced forms of caffeic acid and their phase II metabolites, and those of hydroxyphenylpropionic, hydroxylphenylacetic, benzoic and hippuric acids, highlight the importance of colonic absorption. Total urinary excretion of the phenols added up to 235 µmol, corresponding to 22.3% of the ingested amount (1055 µM). In conclusion, rosemary tea polyphenols are partially bioavailable and extensively metabolized, mainly by the colonic microbiota.


Assuntos
Rosmarinus , Disponibilidade Biológica , Humanos , Fenóis , Polifenóis , Chá
9.
J Sci Food Agric ; 98(10): 3741-3751, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29327407

RESUMO

BACKGROUND: Rosmarinus officinalis is an aromatic plant used in folk medicine as a result of the therapeutic properties associated with its phenolic composition, being rich in rosmarinic acid (RA) and caffeic acid (CA). To better understand the bioactivity of these compounds, their absorption and metabolism were assessed in human Caco-2 and HepG2 cells, as small intestine and liver models, respectively, using RA and CA standards, as well as a rosemary infusion and ferulic acid (FA). RESULTS: Test compounds were partially up-taken and metabolized by Caco-2 and HepG2 cells, although a higher metabolization rate was observed after hepatic incubation compared to intestinal incubation. CA was the compound best absorbed followed by RA and FA, showing metabolites percentages of 30.4%, 11.8% and 4.4% in Caco-2 and 34.3%, 10.3% and 3.2% in HepG2 cells, respectively. RA in the rosemary infusion showed improved bioavailability compared to pure RA. Methyl derivatives were the main metabolites detected for CA and RA after intestinal and hepatic metabolism, followed by methyl-glucuronidates and glucuronidates. RA was also minimally hydrolyzed into CA, whereas FA only was glucuronidated. Rosemary polyphenols followed the same biotransformation pathways as the standards. In addition, phase II derivatives of luteolin were observed. CONCLUSION: Rosemary polyphenols are partially metabolized in both the intestine and liver. © 2018 Society of Chemical Industry.


Assuntos
Extratos Vegetais/metabolismo , Polifenóis/metabolismo , Rosmarinus/química , Células CACO-2 , Células Hep G2 , Humanos , Mucosa Intestinal/metabolismo , Intestinos/química , Fígado/química , Fígado/metabolismo , Modelos Biológicos , Extratos Vegetais/química , Polifenóis/química , Rosmarinus/metabolismo
10.
Phytochem Anal ; 29(1): 87-100, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28895237

RESUMO

INTRODUCTION: Rosemary (Rosmarinus officinalis L.) is an aromatic plant common in Tunisia and it is widely consumed as a tea in traditional cuisine and in folk medicine to treat various illnesses. Currently, most research efforts have been focused on rosemary essential oil, alcoholic and aqueous extracts, however, little is reported on rosemary infusion composition. OBJECTIVE: To investigate compounds present in rosemary tea obtained from Rosmarinus officinalis L. collected in a sub-humid area of Tunisia in order to assess whether the traditional rosemary tea preparation method could be considered as a reference method for rosemary's compounds extraction. METHODOLOGY: Qualitative characterisation of Rosmarinus officinalis tea obtained after rosemary infusion in boiled water was determined by high performance liquid chromatography coupled with electrospray ionisation quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS). Quantitative analysis relies on high performance liquid chromatography with diode array detector (HPLC-DAD). RESULTS: Forty-nine compounds belonging to six families, namely flavonoids, phenolic acids, phenolic terpenes, jasmonate, phenolic glycosides, and lignans were identified. To the best of the authors' knowledge eucommin A is characterised for the first time in rosemary. Rosmarinic acid (158.13 µg/g dried rosemary) was the main compound followed then by feruloylnepitrin (100.87 µg/g) and luteolin-3'-O-(2″-O-acetyl)-ß-d-glucuronide (44.04 µg/g). Among quantified compounds, luteolin-7-O-rutinoside was the compound with the lowest concentration. CONCLUSION: The infusion method allows several polyphenols present in rosemary tea to be extracted, therefore it could be a reference method for rosemary's compounds extraction. Moreover, traditional Tunisian Rosmarinus officinalis tea consumption is of interest for its rich phenolic content. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Bebidas/análise , Rosmarinus/química , Clima , Glicosídeos/química , Hidroxibenzoatos/química , Lignanas/química , Estrutura Molecular , Polifenóis/química , Tunísia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA