Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Electromagn Biol Med ; 43(3): 187-203, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38990565

RESUMO

To enhance our understanding of electroporation and optimize the pulses used within the frequency range of 1 kHz to 100 MHz, with the aim of minimizing side effects such as muscle contraction, we introduce a novel electrical model, structured as a 2D representation employing exclusively lumped elements. This model adeptly encapsulates the intricate dynamics of living cells' impedance variation. A distinguishing attribute of the proposed model lies in its capacity to decipher the distribution of transmembrane potential across various orientations within living cells. This aspect bears critical importance, particularly in contexts such as electroporation and cellular stimulation, where precise knowledge of potential gradients is pivotal. Furthermore, the augmentation of the proposed electrical model with the Hodgkin-Huxley (HH) model introduces an additional dimension. This integration augments the model's capabilities, specifically enabling the exploration of muscle cell stimulation and the generation of action potentials. This broader scope enhances the model's utility, facilitating comprehensive investigations into intricate cellular behaviors under the influence of external electric fields.


In our research, we've introduced an enhanced electrical model for living cells. This model simplifies cell behavior using only basic electrical components like resistors and capacitors. It's designed to mimic the real electrical properties of cells, particularly the cell membrane, which can change in response to electricity at different frequencies, ranging from 1 kHz to 100 MHz. This frequency range is essential for studying processes like electroporation, a technique used in various medical applications.Our model is represented in a two-dimensional structure, making it a handy tool for identifying transmembrane potential distributions, a critical factor in electroporation procedures. This means we can better understand how cells react to electrical impulses, which is crucial for improving electroporation techniques.Additionally, we've extended our model to include muscle cells by incorporating the Hodgkin-Huxley model, a well-established model for understanding electrical behavior in muscle cells. This allows us to study how muscles contract when exposed to different electrical pulses, a common side effect of electroporation procedures. By examining various pulse characteristics, we can determine which ones are best for minimizing muscle contractions during electroporation.In summary, our research has led to the development of a versatile electrical model for living cells. It not only helps us understand how cells respond to electricity in the context of electroporation but also provides insights into muscle contractions and how to optimize electrical pulses for medical treatments.


Assuntos
Potenciais de Ação , Modelos Biológicos , Eletroporação , Sobrevivência Celular/efeitos da radiação , Eletricidade , Humanos
2.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681896

RESUMO

The purpose of this study was to verify whether the nanosecond pulsed electric field, not eliciting thermal effects, permanently changes the molecular processes and gene expression of Leydig TM3 cells. The cells were exposed to a moderate electric field (80 quasi-rectangular shape pulses, 60 ns pulse width, and an electric field of 14 kV/cm). The putative disturbances were recorded over 24 h. After exposure to the nanosecond pulsed electric field, a 19% increase in cell diameter, a loss of microvilli, and a 70% reduction in cell adhesion were observed. Some cells showed the nonapoptotic externalization of phosphatidylserine through the pores in the plasma membrane. The cell proportion in the subG1 phase increased by 8% at the expense of the S and G2/M phases, and the DNA was fragmented in a small proportion of the cells. The membrane mitochondrial potential and superoxide content decreased by 37% and 23%, respectively. Microarray's transcriptome analysis demonstrated a negative transient effect on the expression of genes involved in oxidative phosphorylation, DNA repair, cell proliferation, and the overexpression of plasma membrane proteins. We conclude that nanosecond pulsed electric field affected the physiology and gene expression of TM3 cells transiently, with a noticeable heterogeneity of cellular responses.


Assuntos
Biomarcadores/metabolismo , Eletricidade , Regulação da Expressão Gênica/efeitos da radiação , Células Intersticiais do Testículo/metabolismo , Nanotecnologia/métodos , Animais , Apoptose , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Movimento Celular , Proliferação de Células , Células Cultivadas , Eletroporação , Células Intersticiais do Testículo/efeitos da radiação , Masculino , Potencial da Membrana Mitocondrial , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA