Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(12): 108364, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38025786

RESUMO

Prdm12 is a transcriptional regulator essential for the emergence of the somatic nociceptive lineage during sensory neurogenesis. The exact mechanisms by which Prdm12 promotes nociceptor development remain, however, poorly understood. Here, we report that the trigeminal and dorsal root ganglia hypoplasia induced by the loss of Prdm12 involves Bax-dependent apoptosis and that it is accompanied by the ectopic expression of the visceral sensory neuron determinants Phox2a and Phox2b, which is, however, not sufficient to impose a complete fate switch in surviving somatosensory neurons. Mechanistically, our data reveal that Prdm12 is required from somatosensory neural precursors to early post-mitotic differentiating nociceptive neurons to repress Phox2a/b and that its repressive function is context dependent. Together, these findings reveal that besides its essential role in nociceptor survival during development, Prdm12 also promotes nociceptor fate via an additional mechanism, by preventing precursors from engaging into an alternate Phox2 driven visceral neuronal type differentiation program.

2.
Development ; 150(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37497580

RESUMO

Earlier data on liver development demonstrated that morphogenesis of the bile duct, portal mesenchyme and hepatic artery is interdependent, yet how this interdependency is orchestrated remains unknown. Here, using 2D and 3D imaging, we first describe how portal mesenchymal cells become organised to form hepatic arteries. Next, we examined intercellular signalling active during portal area development and found that axon guidance genes are dynamically expressed in developing bile ducts and portal mesenchyme. Using tissue-specific gene inactivation in mice, we show that the repulsive guidance molecule BMP co-receptor A (RGMA)/neogenin (NEO1) receptor/ligand pair is dispensable for portal area development, but that deficient roundabout 2 (ROBO2)/SLIT2 signalling in the portal mesenchyme causes reduced maturation of the vascular smooth muscle cells that form the tunica media of the hepatic artery. This arterial anomaly does not impact liver function in homeostatic conditions, but is associated with significant tissular damage following partial hepatectomy. In conclusion, our work identifies new players in development of the liver vasculature in health and liver regeneration.


Assuntos
Orientação de Axônios , Artéria Hepática , Animais , Camundongos , Ductos Biliares , Morfogênese , Inativação Gênica
3.
Nat Commun ; 14(1): 1543, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941270

RESUMO

Bicuspid aortic valve (BAV), the most common cardiovascular malformation occurs in 0.5-1.2% of the population. Although highly heritable, few causal mutations have been identified in BAV patients. Here, we report the targeted sequencing of HOXA1 in a cohort of BAV patients and the identification of rare indel variants in the homopolymeric histidine tract of HOXA1. In vitro analysis shows that disruption of this motif leads to a significant reduction in protein half-life and defective transcriptional activity of HOXA1. In zebrafish, targeting hoxa1a ortholog results in aortic valve defects. In vivo assays indicates that these variants behave as dominant negatives leading abnormal valve development. In mice, deletion of Hoxa1 leads to BAV with a very small, rudimentary non-coronary leaflet. We also show that 17% of homozygous Hoxa1-1His knock-in mice present similar phenotype. Genetic lineage tracing in Hoxa1-/- mutant mice reveals an abnormal reduction of neural crest-derived cells in the valve leaflet, which is caused by a failure of early migration of these cells.


Assuntos
Doença da Válvula Aórtica Bicúspide , Doenças das Valvas Cardíacas , Proteínas de Homeodomínio , Animais , Camundongos , Valva Aórtica/anormalidades , Doença da Válvula Aórtica Bicúspide/metabolismo , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/metabolismo , Histidina/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Homeodomínio/genética
4.
Cancers (Basel) ; 14(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36230610

RESUMO

Papillary thyroid carcinoma (PTC) is the most frequent histological subtype of thyroid cancers (TC), and BRAFV600E genetic alteration is found in 60% of this endocrine cancer. This oncogene is associated with poor prognosis, resistance to radioiodine therapy, and tumor progression. Histological follow-up by anatomo-pathologists revealed that two-thirds of surgically-removed thyroids do not present malignant lesions. Thus, continued fundamental research into the molecular mechanisms of TC downstream of BRAFV600E remains central to better understanding the clinical behavior of these tumors. To study PTC, we used a mouse model in which expression of BRAFV600E was specifically switched on in thyrocytes by doxycycline administration. Upon daily intraperitoneal doxycycline injection, thyroid tissue rapidly acquired histological features mimicking human PTC. Transcriptomic analysis revealed major changes in immune signaling pathways upon BRAFV600E induction. Multiplex immunofluorescence confirmed the abundant recruitment of macrophages, among which a population of LYVE-1+/CD206+/STABILIN-1+ was dramatically increased. By genetically inactivating the gene coding for the scavenger receptor STABILIN-1, we showed an increase of CD8+ T cells in this in situ BRAFV600E-dependent TC. Lastly, we demonstrated the presence of CD206+/STABILIN-1+ macrophages in human thyroid pathologies. Altogether, we revealed the recruitment of immunosuppressive STABILIN-1 macrophages in a PTC mouse model and the interest to further study this macrophage subpopulation in human thyroid tissues.

5.
Nat Cell Biol ; 24(7): 1114-1128, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35817961

RESUMO

The mammalian heart arises from various populations of Mesp1-expressing cardiovascular progenitors (CPs) that are specified during the early stages of gastrulation. Mesp1 is a transcription factor that acts as a master regulator of CP specification and differentiation. However, how Mesp1 regulates the chromatin landscape of nascent mesodermal cells to define the temporal and spatial patterning of the distinct populations of CPs remains unknown. Here, by combining ChIP-seq, RNA-seq and ATAC-seq during mouse pluripotent stem cell differentiation, we defined the dynamic remodelling of the chromatin landscape mediated by Mesp1. We identified different enhancers that are temporally regulated to erase the pluripotent state and specify the pools of CPs that mediate heart development. We identified Zic2 and Zic3 as essential cofactors that act with Mesp1 to regulate its transcription-factor activity at key mesodermal enhancers, thereby regulating the chromatin remodelling and gene expression associated with the specification of the different populations of CPs in vivo. Our study identifies the dynamics of the chromatin landscape and enhancer remodelling associated with temporal patterning of early mesodermal cells into the distinct populations of CPs that mediate heart development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cromatina , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Coração , Proteínas de Homeodomínio/metabolismo , Mamíferos/metabolismo , Mesoderma , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
J Biol Chem ; 297(4): 101083, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34419447

RESUMO

The cytosolic enzyme ethylmalonyl-CoA decarboxylase (ECHDC1) decarboxylates ethyl- or methyl-malonyl-CoA, two side products of acetyl-CoA carboxylase. These CoA derivatives can be used to synthesize a subset of branched-chain fatty acids (FAs). We previously found that ECHDC1 limits the synthesis of these abnormal FAs in cell lines, but its effects in vivo are unknown. To further evaluate the effects of ECHDC1 deficiency, we generated knockout mice. These mice were viable, fertile, showed normal postnatal growth, and lacked obvious macroscopic and histologic changes. Surprisingly, tissues from wild-type mice already contained methyl-branched FAs due to methylmalonyl-CoA incorporation, but these FAs were only increased in the intraorbital glands of ECHDC1 knockout mice. In contrast, ECHDC1 knockout mice accumulated 16-20-carbon FAs carrying ethyl-branches in all tissues, which were undetectable in wild-type mice. Ethyl-branched FAs were incorporated into different lipids, including acylcarnitines, phosphatidylcholines, plasmanylcholines, and triglycerides. Interestingly, we found a variety of unusual glycine-conjugates in the urine of knockout mice, which included adducts of ethyl-branched compounds in different stages of oxidation. This suggests that the excretion of potentially toxic intermediates of branched-chain FA metabolism might prevent a more dramatic phenotype in these mice. Curiously, ECHDC1 knockout mice also accumulated 2,2-dimethylmalonyl-CoA. This indicates that the broad specificity of ECHDC1 might help eliminate a variety of potentially dangerous branched-chain dicarboxylyl-CoAs. We conclude that ECHDC1 prevents the formation of ethyl-branched FAs and that urinary excretion of glycine-conjugates allows mice to eliminate potentially deleterious intermediates of branched-chain FA metabolism.


Assuntos
Acil Coenzima A/metabolismo , Carboxiliases/deficiência , Ácidos Graxos/metabolismo , Acil Coenzima A/genética , Animais , Carboxiliases/metabolismo , Ácidos Graxos/genética , Camundongos , Camundongos Knockout
7.
Sci Rep ; 11(1): 14519, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267243

RESUMO

Tight junction complexes are involved in the establishment and maintenance of cell polarity and the regulation of signalling pathways, controlling biological processes such as cell differentiation and cell proliferation. MarvelD3 is a tight junction protein expressed in adult epithelial and endothelial cells. In Xenopus laevis, MarvelD3 morphants present differentiation defects of several ectodermal derivatives. In vitro experiments further revealed that MarvelD3 couples tight junctions to the MEKK1-JNK pathway to regulate cell behaviour and survival. In this work, we found that MarvelD3 is expressed from early developmental stages in the exocrine and endocrine compartments of the pancreas, as well as in endothelial cells of this organ. We thoroughly characterized MarvelD3 expression pattern in developing pancreas and evaluated its function by genetic ablation. Surprisingly, inactivation of MarvelD3 in mice did not alter development and differentiation of the pancreatic tissue. Moreover, tight junction formation and organization, cell polarization, and activity of the JNK-pathway were not impacted by the deletion of MarvelD3.


Assuntos
Proteínas com Domínio MARVEL/genética , Pâncreas/embriologia , Pâncreas/fisiologia , Proteínas de Junções Íntimas/genética , Animais , Sistemas CRISPR-Cas , Diferenciação Celular/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Sistema de Sinalização das MAP Quinases/genética , Proteínas com Domínio MARVEL/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/citologia , Glândulas Salivares/fisiologia , Análise Espaço-Temporal , Proteínas de Junções Íntimas/metabolismo
8.
Genesis ; 59(7-8): e23435, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34080769

RESUMO

In the spinal cord, ventral interneurons regulate the activity of motor neurons, thereby controlling motor activities including locomotion. Interneurons arise during embryonic development from distinct progenitor domains orderly distributed along the dorso-ventral axis of the neural tube. The p2 progenitor domain generates at least five V2 interneuron populations. However, identification and characterization of all V2 populations remain currently incomplete and the mechanisms that control their development remain only partly understood. In this study, we report the generation of a Vsx1-CreERT2 BAC transgenic mouse line that drives CreERT2 recombinase expression mimicking endogenous Vsx1 expression pattern in the developing spinal cord. We showed that the Vsx1-CreERT2 transgene can mediate recombination in V2 precursors with a high efficacy and specificity. Lineage tracing demonstrated that all the V2 interneurons in the mouse developing spinal cord derive from cells expressing Vsx1. Finally, we confirmed that V2 precursors generate additional V2 populations that are not characterized yet. Thus, the Vsx1-CreERT2 line described here is a useful genetic tool for lineage tracing and for functional studies of the mouse spinal V2 interneurons.


Assuntos
Proteínas do Olho/genética , Marcação de Genes/métodos , Proteínas de Homeodomínio/genética , Interneurônios/metabolismo , Neurogênese , Medula Espinal/metabolismo , Animais , Linhagem da Célula , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/metabolismo , Integrases/genética , Integrases/metabolismo , Interneurônios/citologia , Camundongos , Camundongos Endogâmicos C57BL , Medula Espinal/citologia , Medula Espinal/embriologia , Tamoxifeno/farmacologia , Ativação Transcricional/efeitos dos fármacos , Transgenes
9.
J Invest Dermatol ; 141(11): 2668-2678.e6, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33992648

RESUMO

Exacerbated IL-22 activity induces tissue inflammation and immune disorders such as psoriasis. However, because IL-22 is also essential for tissue repair and defense at barrier interfaces, targeting IL-22 activity to treat psoriasis bears the risk of deleterious effects at mucosal sites such as the gut. We previously showed in vitro that IL-22 signaling relies on IL-22 receptor alpha (IL-22Rα) Y-dependent and -independent pathways. The second depends on the C-terminal Y-less region of IL-22Rα and leads to a massive signal transducer and activator of transcription 3 (STAT3) activation. Because STAT3 activation is associated with the development of psoriasis, we hypothesized that the specific inhibition of the noncanonical STAT3 activation by the Y-less region of IL-22Rα could reduce psoriasis-like disease while leaving intact its tissue defense functions in the gut. We show that mice expressing a C-terminally truncated version of IL-22Rα (ΔCtermut/mut mice) are protected from the development of psoriasis-like dermatitis lesions induced by imiquimod to a lesser extent than Il22ra-/- mice. In contrast, only Il22ra-/- mice lose weight after Citrobacter rodentium infection. Altogether, our data suggest that specific targeting of the noncanonical STAT3 activation by IL-22 could serve to treat psoriasis-like skin inflammation without affecting IL-22‒dependent tissue repair or barrier defense at other sites.


Assuntos
Imiquimode/toxicidade , Psoríase/induzido quimicamente , Receptores de Interleucina/fisiologia , Fator de Transcrição STAT3/fisiologia , Animais , Citrobacter rodentium , Infecções por Enterobacteriaceae/imunologia , Interleucinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Interleucina 22
10.
Cancer Res ; 81(10): 2679-2689, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33602788

RESUMO

Pancreatic acinar cells are a cell type of origin for pancreatic cancer that become progressively less sensitive to tumorigenesis induced by oncogenic Kras mutations after birth. This sensitivity is increased when Kras mutations are combined with pancreatitis. Molecular mechanisms underlying these observations are still largely unknown. To identify these mechanisms, we generated the first CRISPR-edited mouse models that enable detection of wild-type and mutant KRAS proteins in vivo. Analysis of these mouse models revealed that more than 75% of adult acinar cells are devoid of detectable KRAS protein. In the 25% of acinar cells expressing KRAS protein, transcriptomic analysis highlighted a slight upregulation of the RAS and MAPK pathways. However, at the protein level, only marginal pancreatic expression of essential KRAS effectors, including C-RAF, was observed. The expression of KRAS and its effectors gradually decreased after birth. The low sensitivity of adult acinar cells to Kras mutations resulted from low expression of KRAS and its effectors and the subsequent lack of activation of RAS/MAPK pathways. Pancreatitis triggered expression of KRAS and its effectors as well as subsequent activation of downstream signaling; this induction required the activity of EGFR. Finally, expression of C-RAF in adult pancreas was required for pancreatic tumorigenesis. In conclusion, our study reveals that control of the expression of KRAS and its effectors regulates the sensitivity of acinar cells to transformation by oncogenic Kras mutations. SIGNIFICANCE: This study generates new mouse models to study regulation of KRAS during pancreatic tumorigenesis and highlights a novel mechanism through which pancreatitis sensitizes acinar cells to Kras mutations.


Assuntos
Células Acinares/patologia , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias Pancreáticas/patologia , Pancreatite/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células Acinares/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Sistemas CRISPR-Cas , Proliferação de Células , Modelos Animais de Doenças , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Masculino , Camundongos , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , Pancreatite/etiologia , Pancreatite/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Sci Signal ; 13(653)2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051259

RESUMO

Defects in protein reabsorption by the proximal tubule are toxic for epithelial cells in the nephron and may result in nephropathy. In this study, we showed that the ion channel TRPV4 modulated the endocytosis of albumin and low-molecular weight proteins in the proximal tubule. TRPV4 was found at the basolateral side of proximal tubule cells, and its mechanical activation by cell stretching induced Ca2+ entry into the cytosol, which promoted endocytosis. Trpv4-/- mice presented with mild proximal tubule dysfunction under basal conditions. To challenge endocytic function, the permeability of the glomerular filter was altered by systemic delivery of angiotensin II. The proteinuria induced by this treatment was more severe in Trpv4-/- than in Trpv4+/+ mice. Injecting antibodies against the glomerular basement membrane to induce glomerulonephritis is a more pathophysiologically relevant method of impairing glomerular filter permeability. Albuminuria was more severe in mice that lacked TRPV4 specifically in the proximal tubule than in control mice. These results emphasize the importance of TRPV4 in sensing pressure in the proximal tubule in response to variations in the amount of ultrafiltrate and unveil a mechanism that controls protein reabsorption.


Assuntos
Albuminas/metabolismo , Túbulos Renais Proximais/metabolismo , Canais de Cátion TRPV/metabolismo , Albuminas/farmacocinética , Animais , Células Cultivadas , Endocitose , Regulação da Expressão Gênica , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Túbulos Renais Proximais/citologia , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Técnicas de Patch-Clamp , Estresse Mecânico , Canais de Cátion TRPV/genética
12.
Int J Mol Sci ; 21(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138218

RESUMO

Group I metabotropic glutamate receptors (mGluR) are involved in various forms of synaptic plasticity that are believed to underlie declarative memory. We previously showed that mGluR5 specifically activates channels containing TRPC1, an isoform of the canonical family of Transient Receptor Potential channels highly expressed in the CA1-3 regions of the hippocampus. Using a tamoxifen-inducible conditional knockout model, we show here that the acute deletion of the Trpc1 gene alters the extinction of spatial reference memory. mGluR-induced long-term depression, which is partially responsible for memory extinction, was impaired in these mice. Similar results were obtained in vitro and in vivo by inhibiting the channel by its most specific inhibitor, Pico145. Among the numerous known postsynaptic pathways activated by type I mGluR, we observed that the deletion of Trpc1 impaired the activation of ERK1/2 and the subsequent expression of Arc, an immediate early gene that plays a key role in AMPA receptors endocytosis and subsequent long-term depression.


Assuntos
Hipocampo/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Depressão/genética , Depressão/metabolismo , Depressão/fisiopatologia , Hipocampo/fisiologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Knockout , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Memória Espacial/fisiologia , Canais de Cátion TRPC/genética
13.
Leukemia ; 34(2): 510-521, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31471561

RESUMO

Frameshifting mutations (-1/+2) of the calreticulin (CALR) gene are responsible for the development of essential thrombocythemia (ET) and primary myelofibrosis (PMF). The mutant CALR proteins activate the thrombopoietin receptor (TpoR) inducing cytokine-independent megakaryocyte progenitor proliferation. Here, we generated via CRISPR/Cas9 technology two knock-in mouse models that are heterozygous for a type-I murine Calr mutation. These mice exhibit an ET phenotype with elevated circulating platelets compared with wild-type controls, consistent with our previous results showing that murine CALR mutants activate TpoR. We also show that the mutant CALR proteins can be detected in plasma. The phenotype of Calr del52 is transplantable, and the Calr mutated hematopoietic cells have a slow-rising advantage over wild-type hematopoiesis. Importantly, a homozygous state of a type-1 Calr mutation is lethal at a late embryonic development stage, showing narrowed ventricular myocardium walls, similar to the murine Calr knockout phenotype, pointing to the C terminus of CALR as crucial for heart development.


Assuntos
Calreticulina/genética , Éxons/genética , Coração/fisiologia , Trombocitemia Essencial/genética , Animais , Sistemas CRISPR-Cas/genética , Feminino , Mutação da Fase de Leitura/genética , Hematopoese/genética , Homozigoto , Masculino , Camundongos , Mielofibrose Primária/genética , Receptores de Trombopoetina/genética , Trombocitose/genética
14.
Commun Biol ; 2: 472, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31872076

RESUMO

Monocytes play a major role in the defense against pathogens. They are rapidly mobilized to inflamed sites where they exert both proinflammatory and regulatory effector functions. It is still poorly understood how this dynamic and exceptionally plastic system is controlled at the molecular level. Herein, we evaluated the differentiation process that occurs in Ly6Chi monocytes during oral infection by Toxoplasma gondii. Flow cytometry and single-cell analysis revealed distinct activation status and gene expression profiles in the bone marrow, the spleen and the lamina propria of infected mice. We provide further evidence that acquisition of effector functions, such as the capacity to produce interleukin-27, is accompanied by distinct waves of epigenetic programming, highlighting a role for STAT1/IRF1 in the bone marrow and AP-1/NF-κB in the periphery. This work broadens our understanding of the molecular events that occur in vivo during monocyte differentiation in response to inflammatory cues.


Assuntos
Diferenciação Celular/imunologia , Monócitos/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Toxoplasmose/parasitologia , Animais , Reprogramação Celular/genética , Biologia Computacional/métodos , Epigênese Genética , Perfilação da Expressão Gênica , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Monócitos/citologia , Monócitos/metabolismo , Análise de Célula Única , Toxoplasmose/genética , Toxoplasmose/metabolismo
15.
Nat Commun ; 10(1): 3306, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341159

RESUMO

Memory CD8+ T cells have the ability to provide lifelong immunity against pathogens. Although memory features generally arise after challenge with a foreign antigen, naïve CD8 single positive (SP) thymocytes may acquire phenotypic and functional characteristics of memory cells in response to cytokines such as interleukin-4. This process is associated with the induction of the T-box transcription factor Eomesodermin (EOMES). However, the underlying molecular mechanisms remain ill-defined. Using epigenomic profiling, we show that these innate memory CD8SP cells acquire only a portion of the active enhancer repertoire of conventional memory cells. This reprograming is secondary to EOMES recruitment, mostly to RUNX3-bound enhancers. Furthermore, EOMES is found within chromatin-associated complexes containing BRG1 and promotes the recruitment of this chromatin remodelling factor. Also, the in vivo acquisition of EOMES-dependent program is BRG1-dependent. In conclusion, our results support a strong epigenetic basis for the EOMES-driven establishment of CD8+ T cell innate memory program.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/fisiologia , DNA Helicases/fisiologia , Epigênese Genética , Memória Imunológica , Proteínas Nucleares/fisiologia , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/fisiologia , Animais , Subunidade alfa 3 de Fator de Ligação ao Core/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , DNA Helicases/imunologia , DNA Helicases/metabolismo , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Proteínas com Domínio T/genética , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
16.
Sci Rep ; 9(1): 1852, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755657

RESUMO

Para-Phenylenediamine (PPD) is an aromatic amine used in hair dyes and in temporary black henna tattoos, which is a frequent cause of allergic contact dermatitis (ACD). ACD is a skin inflammatory reaction characterized by modifications such as spongiosis, exocytosis and acanthosis. The aim of this study is to characterize the expression and the role of IL-20-related cytokines, including IL-19, IL-20, IL-22 and IL-24, in ACD. The expression of IL19, IL20, IL22 and IL24 is increased in affected skin from PPD allergic patients compared with uninvolved skin. In addition, the expression of these cytokines positively correlates with clinical symptoms. To assess their role in ACD, we set up a mouse model of PPD-induced allergic contact dermatitis and we showed that, in contrast to Il22-deficient mice, Il22ra1-, Il20rb- and Il24-deficient mice are partially protected against development of PPD-induced contact hypersensitivity. These mice have decreased ear thickening and less acanthosis compared with WT mice after PPD treatment. In addition, the absence of IL-22R, IL-20R2 or IL-24 affects the recruitment of neutrophils into the skin but not the total IgE production. Taken together, these results demonstrate the implication of IL-24 via the IL-20R type II receptor in the inflammatory process of ACD.


Assuntos
Citocinas/metabolismo , Dermatite Alérgica de Contato/metabolismo , Inflamação/induzido quimicamente , Interleucinas/metabolismo , Pele/efeitos dos fármacos , Adulto , Idoso , Animais , Biópsia , Corantes , Modelos Animais de Doenças , Humanos , Imunoglobulina E/metabolismo , Inflamação/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fenilenodiaminas , Receptores de Interleucina/metabolismo , Pele/metabolismo , Interleucina 22
17.
Proc Natl Acad Sci U S A ; 116(4): 1241-1250, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30626647

RESUMO

Neutropenia represents an important problem in patients with genetic deficiency in either the glucose-6-phosphate transporter of the endoplasmic reticulum (G6PT/SLC37A4) or G6PC3, an endoplasmic reticulum phosphatase homologous to glucose-6-phosphatase. While affected granulocytes show reduced glucose utilization, the underlying mechanism is unknown and causal therapies are lacking. Using a combination of enzymological, cell-culture, and in vivo approaches, we demonstrate that G6PT and G6PC3 collaborate to destroy 1,5-anhydroglucitol-6-phosphate (1,5AG6P), a close structural analog of glucose-6-phosphate and an inhibitor of low-KM hexokinases, which catalyze the first step in glycolysis in most tissues. We show that 1,5AG6P is made by phosphorylation of 1,5-anhydroglucitol, a compound normally present in human plasma, by side activities of ADP-glucokinase and low-KM hexokinases. Granulocytes from patients deficient in G6PC3 or G6PT accumulate 1,5AG6P to concentrations (∼3 mM) that strongly inhibit hexokinase activity. In a model of G6PC3-deficient mouse neutrophils, physiological concentrations of 1,5-anhydroglucitol caused massive accumulation of 1,5AG6P, a decrease in glucose utilization, and cell death. Treating G6PC3-deficient mice with an inhibitor of the kidney glucose transporter SGLT2 to lower their blood level of 1,5-anhydroglucitol restored a normal neutrophil count, while administration of 1,5-anhydroglucitol had the opposite effect. In conclusion, we show that the neutropenia in patients with G6PC3 or G6PT mutations is a metabolite-repair deficiency, caused by a failure to eliminate the nonclassical metabolite 1,5AG6P.


Assuntos
Antiporters/metabolismo , Glucose-6-Fosfatase/metabolismo , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Neutropenia/metabolismo , Fosforilação/fisiologia , Animais , Morte Celular/fisiologia , Linhagem Celular , Retículo Endoplasmático/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Ratos Wistar
18.
Hepatology ; 67(1): 313-327, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28833283

RESUMO

Transcriptional networks control the differentiation of the hepatocyte and cholangiocyte lineages from embryonic liver progenitor cells and their subsequent maturation to the adult phenotype. However, how relative levels of hepatocyte and cholangiocyte gene expression are determined during differentiation remains poorly understood. Here, we identify microRNA (miR)-337-3p as a regulator of liver development. miR-337-3p stimulates expression of cholangiocyte genes and represses hepatocyte genes in undifferentiated progenitor cells in vitro and in embryonic mouse livers. Beyond the stage of lineage segregation, miR-337-3p controls the transcriptional network dynamics of developing hepatocytes and balances both cholangiocyte populations that constitute the ductal plate. miR-337-3p requires Notch and transforming growth factor-ß signaling and exerts a biphasic control on the hepatocyte transcription factor hepatocyte nuclear factor 4α by modulating its activation and repression. With the help of an experimentally validated mathematical model, we show that this biphasic control results from an incoherent feedforward loop between miR-337-3p and hepatocyte nuclear factor 4α. CONCLUSION: Our results identify miR-337-3p as a regulator of liver development and highlight how tight quantitative control of hepatic cell differentiation is exerted through specific gene regulatory network motifs. (Hepatology 2018;67:313-327).


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Fator 1-alfa Nuclear de Hepatócito/genética , Hepatócitos/metabolismo , MicroRNAs/genética , Animais , Western Blotting , Células Cultivadas , Camundongos , Transdução de Sinais/genética , Estatísticas não Paramétricas , Fatores de Transcrição
19.
Cell Rep ; 20(7): 1525-1532, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813665

RESUMO

The mammary gland (MG) is composed of different cell lineages, including the basal and the luminal cells (LCs) that are maintained by distinct stem cell (SC) populations. LCs can be subdivided into estrogen receptor (ER)+ and ER- cells. LCs act as the cancer cell of origin in different types of mammary tumors. It remains unclear whether the heterogeneity found in luminal-derived mammary tumors arises from a pre-existing heterogeneity within LCs. To investigate LC heterogeneity, we used lineage tracing to assess whether the ER+ lineage is maintained by multipotent SCs or by lineage-restricted SCs. To this end, we generated doxycycline-inducible ER-rtTA mice that allowed us to perform genetic lineage tracing of ER+ LCs and study their fate and long-term maintenance. Our results show that ER+ cells are maintained by lineage-restricted SCs that exclusively contribute to the expansion of the ER+ lineage during puberty and their maintenance during adult life.


Assuntos
Rastreamento de Células/métodos , Células Epiteliais/citologia , Homeostase/genética , Glândulas Mamárias Animais/citologia , Receptores de Estrogênio/genética , Células-Tronco/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Doxiciclina/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/transplante , Feminino , Efeito Fundador , Expressão Gênica/efeitos dos fármacos , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Transgênicos , Receptores de Estrogênio/metabolismo , Regeneração/genética , Transplante de Células-Tronco , Células-Tronco/metabolismo
20.
Thyroid ; 26(10): 1499-1512, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27599561

RESUMO

BACKGROUND: The dual oxidases (Duox) are involved in hydrogen peroxide generation, which is essential for thyroid hormone synthesis, and therefore they are markers of thyroid function. During inflammation, cytokines upregulate DUOX gene expression in the airway and the intestine, suggesting a role for these proteins in innate immunity. It was previously demonstrated that interleukin-4 (IL-4) upregulates DUOX gene expression in thyrocytes. Although the role of IL-4 in autoimmune thyroid diseases has been studied extensively, the effects of IL-4 on thyroid physiology remain largely unknown. Therefore, a new animal model was generated to study the impact of IL-4 on thyroid function. METHODS: Transgenic (Thyr-IL-4) mice with thyroid-targeted expression of murine IL-4 were generated. Transgene expression was verified at the mRNA and protein level in thyroid tissues and primary cultures. The phenotype of the Thyr-IL-4 animals was characterized by measuring serum thyroxine (T4) and thyrotropin levels and performing thyroid morphometric analysis, immunohistochemistry, whole transcriptome sequencing, quantitative reverse transcription polymerase chain reaction, and ex vivo thyroid function assays. RESULTS: Thyrocytes from two Thyr-IL-4 mouse lines (#30 and #52) expressed IL-4, which was secreted into the extracellular space. Although 10-month-old transgenic animals had T4 and thyrotropin serum levels in the normal range, they had altered thyroid follicular structure with enlarged follicles composed of elongated thyrocytes containing numerous endocytic vesicles. These follicles were positive for T4 staining the colloid, indicating their capacity to produce thyroid hormones. RNA profiling of Thyr-IL-4 thyroid samples revealed modulation of multiple genes involved in inflammation, while no major leukocyte infiltration could be detected. Upregulated expression of Duox1, Duoxa1, and the pendrin anion exchanger gene (Slc26a4) was detected. In contrast, the iodide symporter gene Slc5a5 was markedly downregulated resulting in impaired iodide uptake and reduced thyroid hormone levels in transgenic thyroid tissue. Hydrogen peroxide production was increased in Thyr-IL-4 thyroid tissue compared with wild-type animals, but no significant oxidative stress could be detected. CONCLUSIONS: This is the first study to show that ectopic expression of IL-4 in thyroid tissue upregulates Duox1/Duoxa1 and Slc26a4 expression in the thyroid. The present data demonstrate that IL-4 could affect thyroid morphology and function, mainly by downregulating Slc5a5 expression, while maintaining a normal euthyroid phenotype.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Oxidases Duais/metabolismo , Interleucina-4/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Glândula Tireoide/metabolismo , Regulação para Cima , Absorção Fisiológica , Animais , Proteínas de Transporte de Ânions/genética , Células Cultivadas , Regulação para Baixo , Oxidases Duais/genética , Perfilação da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Interleucina-4/genética , Iodetos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Transportadores de Sulfato , Simportadores/genética , Simportadores/metabolismo , Glândula Tireoide/citologia , Glândula Tireoide/imunologia , Tireotropina/sangue , Tireotropina/metabolismo , Tiroxina/sangue , Tiroxina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA