Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 14(17): 3059-3076, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37566734

RESUMO

Subunit-selective inhibition of N-methyl-d-aspartate receptors (NMDARs) is a promising therapeutic strategy for several neurological disorders, including epilepsy, Alzheimer's and Parkinson's disease, depression, and acute brain injury. We previously described the dihydroquinoline-pyrazoline (DQP) analogue 2a (DQP-26) as a potent NMDAR negative allosteric modulator with selectivity for GluN2C/D over GluN2A/B. However, moderate (<100-fold) subunit selectivity, inadequate cell-membrane permeability, and poor brain penetration complicated the use of 2a as an in vivo probe. In an effort to improve selectivity and the pharmacokinetic profile of the series, we performed additional structure-activity relationship studies of the succinate side chain and investigated the use of prodrugs to mask the pendant carboxylic acid. These efforts led to discovery of the analogue (S)-(-)-2i, also referred to as (S)-(-)-DQP-997-74, which exhibits >100- and >300-fold selectivity for GluN2C- and GluN2D-containing NMDARs (IC50 0.069 and 0.035 µM, respectively) compared to GluN2A- and GluN2B-containing receptors (IC50 5.2 and 16 µM, respectively) and has no effects on AMPA, kainate, or GluN1/GluN3 receptors. Compound (S)-(-)-2i is 5-fold more potent than (S)-2a. In addition, compound 2i shows a time-dependent enhancement of inhibitory actions at GluN2C- and GluN2D-containing NMDARs in the presence of the agonist glutamate, which could attenuate hypersynchronous activity driven by high-frequency excitatory synaptic transmission. Consistent with this finding, compound 2i significantly reduced the number of epileptic events in a murine model of tuberous sclerosis complex (TSC)-induced epilepsy that is associated with upregulation of the GluN2C subunit. Thus, 2i represents a robust tool for the GluN2C/D target validation. Esterification of the succinate carboxylate improved brain penetration, suggesting a strategy for therapeutic development of this series for NMDAR-associated neurological conditions.


Assuntos
Receptores de N-Metil-D-Aspartato , Transmissão Sináptica , Camundongos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade , Transmissão Sináptica/fisiologia , Ácido Glutâmico/farmacologia , Encéfalo/metabolismo
2.
J Biol Chem ; 298(4): 101653, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35101445

RESUMO

PROteolysis TArgeting Chimeras (PROTACs) are hetero-bifunctional small molecules that can simultaneously recruit target proteins and E3 ligases to form a ternary complex, promoting target protein ubiquitination and degradation via the Ubiquitin-Proteasome System (UPS). PROTACs have gained increasing attention in recent years due to certain advantages over traditional therapeutic modalities and enabling targeting of previously "undruggable" proteins. To better understand the mechanism of PROTAC-induced Target Protein Degradation (TPD), several computational approaches have recently been developed to study and predict ternary complex formation. However, mounting evidence suggests that ubiquitination can also be a rate-limiting step in PROTAC-induced TPD. Here, we propose a structure-based computational approach to predict target protein ubiquitination induced by cereblon (CRBN)-based PROTACs by leveraging available structural information of the CRL4A ligase complex (CRBN/DDB1/CUL4A/Rbx1/NEDD8/E2/Ub). We generated ternary complex ensembles with Rosetta, modeled multiple CRL4A ligase complex conformations, and predicted ubiquitination efficiency by separating the ternary ensemble into productive and unproductive complexes based on the proximity of the ubiquitin to accessible lysines on the target protein. We validated our CRL4A ligase complex models with published ternary complex structures and additionally employed our modeling workflow to predict ubiquitination efficiencies and sites of a series of cyclin-dependent kinases (CDKs) after treatment with TL12-186, a pan-kinase PROTAC. Our predictions are consistent with CDK ubiquitination and site-directed mutagenesis of specific CDK lysine residues as measured using a NanoBRET ubiquitination assay in HEK293 cells. This work structurally links PROTAC-induced ternary formation and ubiquitination, representing an important step toward prediction of target "degradability."


Assuntos
Modelos Moleculares , Ubiquitina-Proteína Ligases , Ubiquitinação , Células HEK293 , Humanos , Estrutura Terciária de Proteína , Proteólise , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
3.
ACS Chem Neurosci ; 9(2): 306-319, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29043770

RESUMO

N-Methyl-d-aspartate receptors (NMDARs) are ionotropic glutamate receptors that mediate excitatory synaptic transmission and have been implicated in numerous neurological disorders. NMDARs typically comprise two GluN1 and two GluN2 subunits. The four GluN2 subtypes (GluN2A-GluN2D) have distinct functional properties and gene expression patterns, which contribute to diverse functional roles for NMDARs in the brain. Here, we present a series of GluN2C/2D-selective negative allosteric modulators built around a N-aryl benzamide (NAB) core. The prototypical compound, NAB-14, is >800-fold selective for recombinant GluN2C/GluN2D over GluN2A/GluN2B in Xenopus oocytes and has an IC50 value of 580 nM at recombinant GluN2D-containing receptors expressed in mammalian cells. NAB-14 inhibits triheteromeric (GluN1/GluN2A/GluN2C) NMDARs with modestly reduced potency and efficacy compared to diheteromeric (GluN1/GluN2C/GluN2C) receptors. Site-directed mutagenesis suggests that structural determinants for NAB-14 inhibition reside in the GluN2D M1 transmembrane helix. NAB-14 inhibits GluN2D-mediated synaptic currents in rat subthalamic neurons and mouse hippocampal interneurons, but has no effect on synaptic transmission in hippocampal pyramidal neurons, which do not express GluN2C or GluN2D. This series possesses some druglike physical properties and modest brain permeability in rat and mouse. Altogether, this work identifies a new series of negative allosteric modulators that are valuable tools for studying GluN2C- and GluN2D-containing NMDAR function in brain circuits, and suggests that the series has the potential to be developed into therapies for selectively modulating brain circuits involving the GluN2C and GluN2D subunits.


Assuntos
Benzamidas/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Regulação Alostérica , Animais , Benzamidas/química , Antagonistas de Aminoácidos Excitatórios/química , Feminino , Células HEK293 , Hipocampo/metabolismo , Humanos , Interneurônios/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Oócitos , Estrutura Secundária de Proteína , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos , Xenopus laevis
4.
J Am Chem Soc ; 139(34): 11650-11653, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28759216

RESUMO

Targeting of cryptic binding sites represents an attractive but underexplored approach to modulating protein function with small molecules. Using the dimeric protease (Pr) from Kaposi's sarcoma-associated herpesvirus (KSHV) as a model system, we sought to dissect a putative allosteric network linking a cryptic site at the dimerization interface to enzyme function. Five cryogenic X-ray structures were solved of the monomeric protease with allosteric inhibitors bound to the dimer interface site. Distinct coordinated movements captured by the allosteric inhibitors were also revealed as alternative states in room-temperature X-ray data and comparative analyses of other dimeric herpesvirus proteases. A two-step mechanism was elucidated through detailed kinetic analyses and suggests an enzyme isomerization model of inhibition. Finally, a representative allosteric inhibitor from this class was shown to be efficacious in a cellular model of viral infectivity. These studies reveal a coordinated dynamic network of atomic communication linking cryptic binding site occupancy and allosteric inactivation of KHSV Pr that can be exploited to target other members of this clinically relevant family of enzymes.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/enzimologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/farmacologia , Cristalografia por Raios X , Infecções por Herpesviridae/tratamento farmacológico , Herpesvirus Humano 8/química , Herpesvirus Humano 8/efeitos dos fármacos , Humanos , Modelos Moleculares , Peptídeo Hidrolases/química , Conformação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos
5.
Cell ; 168(3): 517-526.e18, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28111075

RESUMO

The gut microbiota modulate host biology in numerous ways, but little is known about the molecular mediators of these interactions. Previously, we found a widely distributed family of nonribosomal peptide synthetase gene clusters in gut bacteria. Here, by expressing a subset of these clusters in Escherichia coli or Bacillus subtilis, we show that they encode pyrazinones and dihydropyrazinones. At least one of the 47 clusters is present in 88% of the National Institutes of Health Human Microbiome Project (NIH HMP) stool samples, and they are transcribed under conditions of host colonization. We present evidence that the active form of these molecules is the initially released peptide aldehyde, which bears potent protease inhibitory activity and selectively targets a subset of cathepsins in human cell proteomes. Our findings show that an approach combining bioinformatics, synthetic biology, and heterologous gene cluster expression can rapidly expand our knowledge of the metabolic potential of the microbiota while avoiding the challenges of cultivating fastidious commensals.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal , Microbiota , Peptídeo Sintases/metabolismo , Pirazinas/metabolismo , Animais , Bacillus subtilis/genética , Bactérias/classificação , Bactérias/genética , Escherichia coli/genética , Fezes/microbiologia , Humanos , Peptídeo Sintases/genética , Filogenia
6.
ChemMedChem ; 11(8): 862-9, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26822284

RESUMO

Fragment-based drug discovery has shown promise as an approach for challenging targets such as protein-protein interfaces. We developed and applied an activity-based fragment screen against dimeric Kaposi's sarcoma-associated herpesvirus protease (KSHV Pr) using an optimized fluorogenic substrate. Dose-response determination was performed as a confirmation screen, and NMR spectroscopy was used to map fragment inhibitor binding to KSHV Pr. Kinetic assays demonstrated that several initial hits also inhibit human cytomegalovirus protease (HCMV Pr). Binding of these hits to HCMV Pr was also confirmed by NMR spectroscopy. Despite the use of a target-agnostic fragment library, more than 80 % of confirmed hits disrupted dimerization and bound to a previously reported pocket at the dimer interface of KSHV Pr, not to the active site. One class of fragments, an aminothiazole scaffold, was further explored using commercially available analogues. These compounds demonstrated greater than 100-fold improvement of inhibition. This study illustrates the power of fragment-based screening for these challenging enzymatic targets and provides an example of the potential druggability of pockets at protein-protein interfaces.


Assuntos
Herpesvirus Humano 8/enzimologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/farmacologia , Serina Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Triagem em Larga Escala , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Ligação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade
8.
J Med Chem ; 56(16): 6434-56, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23909910

RESUMO

Here we describe the synthesis and structure-activity relationship for a class of pyrazoline-containing dihydroquinolone negative allosteric modulators of the NMDA receptor that show strong subunit selectivity for GluN2C- and GluN2D-containing receptors over GluN2A- and GluN2B-containing receptors. Several members of this class inhibit NMDA receptor responses in the nanomolar range and are more than 50-fold selective over GluN1/GluN2A and GluN1/GluN2B NMDA receptors, as well as AMPA, kainate, GABA, glycine, nicotinic, serotonin, and purinergic receptors. Analysis of the purified enantiomers of one of the more potent and selective compounds shows that the S-enantiomer is both more potent and more selective than the R-enantiomer. The S-enantiomer had an IC50 of 0.17-0.22 µM at GluN2D- and GluN2C-containing receptors, respectively, and showed over 70-fold selectivity over other NMDA receptor subunits. The subunit selectivity of this class of compounds should be useful in defining the role of GluN2C- and GluN2D-containing receptors in specific brain circuits in both physiological and pathophysiological conditions.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Pirazóis/química , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Barreira Hematoencefálica , Humanos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Relação Estrutura-Atividade
9.
Expert Opin Ther Pat ; 22(11): 1337-52, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23009122

RESUMO

INTRODUCTION: The NMDA receptor is a ligand-gated ion channel that plays a critical role in higher level brain processes and has been implicated in a range of neurological and psychiatric conditions. Although initial studies for the use of NMDA receptor antagonists in neuroprotection were unsuccessful, more recently, NMDA receptor antagonists have shown clinical promise in other indications such as Alzheimer's disease, Parkinson's disease, pain and depression. Based on the clinical observations and more recent insights into receptor pharmacology, new modulatory approaches are beginning to emerge, with potential therapeutic benefit. AREAS COVERED: The article covers the known pharmacology and important features regarding NMDA receptors and their function. A discussion of pre-clinical and clinical relevance is included, as well. The subsequent patent literature review highlights the current state of the art targeting the receptor since the last review in 2010. EXPERT OPINION: The complex nature of the NMDA receptor structure and function is becoming better understood. As knowledge about this receptor increases, it opens up new opportunities for targeting the receptor for many therapeutic indications. New strategies and advances in older technologies will need to be further developed before clinical success can be achieved. First-in-class potentiators and subunit-selective agents form the basis for most new strategies, complemented by efforts to limit off-target liability and fine-tune on-target properties.


Assuntos
Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Desenho de Fármacos , Agonistas de Aminoácidos Excitatórios/química , Antagonistas de Aminoácidos Excitatórios/química , Humanos , Estrutura Molecular , Patentes como Assunto , Conformação Proteica , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade
10.
Mol Pharmacol ; 80(5): 782-95, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21807990

RESUMO

The compound 4-(5-(4-bromophenyl)-3-(6-methyl-2-oxo-4-phenyl-1,2-dihydroquinolin-3-yl)-4,5-dihydro-1H-pyrazol-1-yl)-4-oxobutanoic acid (DQP-1105) is a representative member of a new class of N-methyl-d-aspartate (NMDA) receptor antagonists. DQP-1105 inhibited GluN2C- and GluN2D-containing receptors with IC(50) values that were at least 50-fold lower than those for recombinant GluN2A-, GluN2B-, GluA1-, or GluK2-containing receptors. Inhibition was voltage-independent and could not be surmounted by increasing concentrations of either coagonist, glutamate or glycine, consistent with a noncompetitive mechanism of action. DQP-1105 inhibited single-channel currents in excised outside-out patches without significantly changing mean open time or single-channel conductance, suggesting that DQP inhibits a pregating step without changing the stability of the open pore conformation and thus channel closing rate. Evaluation of DQP-1105 inhibition of chimeric NMDA receptors identified two key residues in the lower lobe of the GluN2 agonist binding domain that control the selectivity of DQP-1105. These data suggest a mechanism for this new class of inhibitors and demonstrate that ligands can access, in a subunit-selective manner, a new site located in the lower, membrane-proximal portion of the agonist-binding domain.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Pirazóis/farmacologia , Quinolonas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Células Cultivadas , Cricetinae , DNA Complementar , Antagonistas de Aminoácidos Excitatórios/química , Humanos , Técnicas de Patch-Clamp , Pirazóis/química , Quinolonas/química , Ratos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade
11.
J Med Chem ; 53(15): 5476-90, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20684595

RESUMO

We describe a new class of subunit-selective antagonists of N-methyl D-aspartate (NMDA)-selective ionotropic glutamate receptors that contain the (E)-3-phenyl-2-styrylquinazolin-4(3H)-one backbone. The inhibition of recombinant NMDA receptor function induced by these quinazolin-4-one derivatives is noncompetitive and voltage-independent, suggesting that this family of compounds does not exert action on the agonist binding site of the receptor or block the channel pore. The compounds described here resemble CP-465,022 ((S)-3-(2-chlorophenyl)-2-[2-(6-diethylaminomethyl-pyridin-2-yl)-vinyl]-6-fluoro-3H-quinazolin-4-one), a noncompetitive antagonist of AMPA-selective glutamate receptors. However, modification of ring substituents resulted in analogues with greater than 100-fold selectivity for recombinant NMDA receptors over AMPA and kainate receptors. Furthermore, within this series of compounds, analogues were identified with 50-fold selectivity for recombinant NR2C/D-containing receptors over NR2A/B containing receptors. These compounds represent a new class of noncompetitive subunit-selective NMDA receptor antagonists.


Assuntos
Quinazolinonas/síntese química , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Sítios de Ligação , Feminino , Modelos Moleculares , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/fisiologia , Quinazolinonas/química , Quinazolinonas/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/fisiologia , Proteínas Recombinantes/antagonistas & inibidores , Estereoisomerismo , Relação Estrutura-Atividade , Xenopus laevis
12.
Mol Cancer Ther ; 7(7): 2212-23, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18645030

RESUMO

Targeting death receptor-mediated apoptosis has emerged as an effective strategy for cancer therapy. However, certain types of cancer cells are intrinsically resistant to death receptor-mediated apoptosis. In an effort to identify agents that can sensitize cancer cells to death receptor-induced apoptosis, we have identified honokiol, a natural product with anticancer activity, as shown in various preclinical studies, as an effective sensitizer of death receptor-mediated apoptosis. Honokiol alone moderately inhibited the growth of human lung cancer cells; however, when combined with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), greater effects on decreasing cell survival and inducing apoptosis than TRAIL alone were observed, indicating that honokiol cooperates with TRAIL to enhance apoptosis. This was also true to Fas-induced apoptosis when combined with Fas ligand or an agonistic anti-Fas antibody. Among several apoptosis-associated proteins tested, cellular FLICE-inhibitory protein (c-FLIP) was the only one that was rapidly down-regulated by honokiol in all of the tested cell lines. The down-regulation of c-FLIP by honokiol could be prevented by the proteasome inhibitor MG132. Moreover, honokiol increased c-FLIP ubiquitination. These results indicate that honokiol down-regulates c-FLIP by facilitating its degradation through a ubiquitin/proteasome-mediated mechanism. Enforced expression of ectopic c-FLIP abolished the ability of honokiol to enhance TRAIL-induced apoptosis. Several honokiol derivatives, which exhibited more potent effects on down-regulation of c-FLIP than honokiol, showed better efficacy than honokiol in inhibiting the growth and enhancing TRAIL-induced apoptosis as well. Collectively, we conclude that c-FLIP down-regulation is a key event for honokiol to modulate the death receptor-induced apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/antagonistas & inibidores , Lignanas/farmacologia , Receptores de Morte Celular/metabolismo , Compostos de Bifenilo/química , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lignanas/química , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA