Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 95(1-1): 012132, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28208315

RESUMO

We perform a tracer counterpermeation (TCP) analysis for a stochastic model of diffusive transport through a narrow linear pore where passing of species within the pore is inhibited or even excluded (single-file diffusion). TCP involves differently labeled but otherwise identical particles from two decoupled infinite reservoirs adsorbing into opposite ends of the pore, and desorbing from either end. In addition to transient behavior, we assess steady-state concentration profiles, spatial correlations, particle number fluctuations, and diffusion fluxes through the pore. From the profiles and fluxes, we determine a generalized tracer diffusion coefficient D_{tr}(x), at various positions x within the pore. D_{tr}(x) has a plateau value in the pore center scaling inversely with the pore length, but it is enhanced near the pore openings. The latter feature reflects the effect of fluctuations in adsorption and desorption, and it is also associated with a nontrivial scaling of the concentration profiles near the pore openings.

3.
Phys Rev Lett ; 113(3): 038301, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-25083666

RESUMO

Inhibited passing of reactant and product molecules within the linear pores of nanoporous catalytic materials strongly reduces reactivity. The dependence of the passing propensity P on pore radius R is analyzed utilizing Langevin dynamics to account for solvent effects. We find that P ∼ (R-R(c))(σ), where passing is sterically blocked for R≤R(c), with σ below the transition state theory value. Deeper insight comes from analysis of the corresponding high-dimensional Fokker-Planck equation, which facilitates an effective small-P approximation, and dimensional reduction enabling utilization of conformal mapping ideas. We analyze passing for spherical molecules and also assess the effect of rotational degrees of freedom for elongated molecules.


Assuntos
Modelos Químicos , Nanoporos , Difusão
4.
J Chem Phys ; 138(13): 134705, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23574250

RESUMO

Statistical mechanical modeling is performed of a catalytic conversion reaction within a functionalized nanoporous material to assess the effect of varying the reaction product-pore interior interaction from attractive to repulsive. A strong enhancement in reactivity is observed not just due to the shift in reaction equilibrium towards completion but also due to enhanced transport within the pore resulting from reduced loading. The latter effect is strongest for highly restricted transport (single-file diffusion), and applies even for irreversible reactions. The analysis is performed utilizing a generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reaction and restricted transport.

5.
Phys Rev Lett ; 108(22): 228301, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23003660

RESUMO

Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The RDE elucidate the nonexponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth.

6.
J Chem Phys ; 134(11): 114107, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21428607

RESUMO

We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice-gas model for this reaction-diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction-diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction-diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion in this multispecies system. The h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior. However, steady-state reactivity, which is localized near the pore ends when those regions are catalytic, is controlled by fluctuations not incorporated into the hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but cannot describe scaling behavior of the reactivity.

7.
Phys Rev Lett ; 89(18): 185901, 2002 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-12398618

RESUMO

We report atomistic simulations for both self- and transport diffusivities of light gases in carbon nanotubes and in two zeolites with comparable pore sizes. We find that transport rates in nanotubes are orders of magnitude faster than in the zeolites we have studied or in any microporous material for which experimental data are available. The exceptionally high transport rates in nanotubes are shown to be a result of the inherent smoothness of the nanotubes. We predict that carbon nanotube membranes will have fluxes that are orders of magnitude greater than crystalline zeolite membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA