Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(2): 289-299, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38295274

RESUMO

Glutathione reductase-like metalloid reductase (GRLMR) is an enzyme that reduces selenodiglutathione (GS-Se-SG), forming zerovalent Se nanoparticles (SeNPs). Error-prone polymerase chain reaction was used to create a library of ∼10,000 GRLMR variants. The library was expressed in BL21Escherichia coli in liquid culture with 50 mM of SeO32- present, under the hypothesis that the enzyme variants with improved GS-Se-SG reduction kinetics would emerge. The selection resulted in a GRLMR variant with two mutations. One of the mutations (D-E) lacks an obvious functional role, whereas the other mutation is L-H within 5 Šof the enzyme active site. This mutation places a second H residue within 5 Šof an active site dicysteine. This GRLMR variant was characterized for NADPH-dependent reduction of GS-Se-SG, GSSG, SeO32-, SeO42-, GS-Te-SG, and TeO32-. The evolved enzyme demonstrated enhanced reduction of SeO32- and gained the ability to reduce SeO42-. This variant is named selenium reductase (SeR) because of its emergent broad activity for a wide variety of Se substrates, whereas the parent enzyme was specific for GS-Se-SG. This study overall suggests that new biosynthetic routes are possible for inorganic nanomaterials using laboratory-directed evolution methods.


Assuntos
Metaloides , Nanopartículas , Selênio , Oxirredutases/genética , Selênio/química , Cistina
2.
Chemistry ; 30(2): e202202760, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37955851

RESUMO

The crystal structures of 4 ligand-rotational isomers of Au25 (PET)18 are presented. Two new ligand-rotational isomers are revealed, and two higher-quality structures (allowing complete solution of the ligand shell) of previously solved Au25 (PET)18 clusters are also presented. One of the structures lacks an inversion center, making it the first chiral Au25 (SR)18 structure solved. These structures combined with previously published Au25 (SR)18 structures enable an analysis of the empirical ligand conformation landscape for Au25 (SR)18 clusters. This analysis shows that the dihedral angles within the PET ligand are restricted to certain observable values, and also that the dihedral angle values are interdependent, in a manner reminiscent of biomolecule dihedral angles such as those in proteins and DNA. The influence of ligand conformational isomerism on optical and electronic properties was calculated, revealing that the ligand conformations affect the nanocluster absorption spectrum, which potentially provides a way to distinguish between isomers at low temperature.

3.
J Phys Chem Lett ; 14(29): 6679-6685, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37463467

RESUMO

The coherent vibrational dynamics of Au144(SC8H9)60, obtained from femtosecond time-resolved transient absorption spectroscopy, are described. Two acoustic modes were identified and assigned, including 2.0 THz breathing and 0.7 THz quadrupolar vibrations. These assignments are consistent with predictions using classical mechanics models, indicating that bulk models accurately describe the vibrational properties of Au144(SC8H9)60. Coherent phonon signals were persistent for up to 3 ps, indicating energy dissipation by the nanocluster was the primary dephasing channel. The initial excitation phases of the breathing and quadrupolar modes were π-phase-shifted, reflecting differences in the displacive nuclear motion of the vibrations. The combined agreement of the vibrational frequencies, relative phases, and decoherence times supported predictions based on classical models. The vibrational frequencies were insensitive to silver substitution for gold but did show increased inhomogeneous damping of the coherent phonons. The ability to predict the vibrational properties of metal nanoclusters can have an impact on nanoresonator and mass sensing technologies.

4.
Chem Commun (Camb) ; 59(56): 8626-8643, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37345851

RESUMO

When a defined protein/peptide (or combinations thereof) control and define the synthesis of an inorganic nanoparticle, the result is a cloneable NanoParticle (cNP). This is because the protein sequence/structure/function is encoded in DNA, and therefore the physicochemical properties of the nanoparticle are also encoded in DNA. Thus the cloneable nanoparticle paradigm can be considered as an extension of the central dogma of molecular biology (e.g. DNA → mRNA → protein → cNP); modifications to the DNA encoding a cNP can modify the resulting properties of the cNP. Inorganic ion oxidoreductases (e.g., mercuric reductase, tellurite reductase, etc.) can select and reduce specific inorganic oxyanions and coordination complexes, creating zerovalent precipitates. Other proteins/peptides (often genetically concatenated to the parent oxidoreductase) serve as ligands, directing the size, shape, crystal structure and other properties of the nanoparticle. The DNA encoding a cNP can be recombinantly transferred into any organism. Ideally, this enables recombinant production of cNPs with the same defined physiochemical properties. Such cNPs are of interest for applications ranging from molecular imaging, bio-remediation, catalysis, and biomining. In this Feature Article we detail and define the cNP concept, and retrace the story of our creation of a cloneable Se NanoParticle (cSeNP). We also describe our more preliminary work that we expect to result in cloneable semiconductor quantum dots, cloneable Te nanoparticles, and other cNP formulations. We highlight the application of cNPs in cellular electron microscopy and compare this approach to other cloneable imaging contrast approaches.


Assuntos
Nanopartículas , Nanopartículas/química , Microscopia Eletrônica
5.
J Phys Chem Lett ; 14(22): 5210-5215, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37257166

RESUMO

The magneto-optical absorption properties of colloidal metal nanoclusters spanning nonmetallic to metallic regimes were examined using variable-temperature variable-field magnetic circular dichroism (VTVH-MCD) spectroscopy. Charge neutral Au25(SC8H9)18 exhibited MCD spectra dominated by Faraday C-terms, consistent with expectations for a nonmetallic paramagnetic nanocluster. This response is reconciled by the open-shell superatom configuration of Au25(SC8H9)18. Metallic and plasmon-supporting Au459(pMBA)170 exhibited temperature-independent VTVH-MCD spectra dominated by Faraday A-terms. Au144(SC8H9)60, which is intermediate to the metallic and nonmetallic limits, showed the most complex VTVH-MCD response of the three nanoclusters, consisting of 19 distinguishable peaks spanning the visible and near-infrared (3.0-1.4 eV). Variable-temperature analysis suggested that none of these transitions originated from plasmon excitation. However, evidence for both paramagnetic and mixed (i.e., nondiscrete) transitions of Au144(SC8H9)60 was observed. These results highlight the complexity of gold nanocluster electronic transitions that emerge as sizes approach metallic length scales. Nanoclusters in this regime may provide opportunities for tailoring the magneto-optical properties of colloidal nanostructures.

6.
Nanoscale ; 14(25): 9134-9141, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35723454

RESUMO

The synthesis and characterization of an Au20(PET)15(DG)2 (PET = phenylethane thiol; DG = diglyme) cluster is reported. Mass spectrometry reveals this as the first diglyme ligated cluster where diglyme ligands survive ionization into the gas phase. Thermal analysis shows the cluster degrades at 156 °C, whereas the similar Au20(PET)16 cluster degrades at 125 °C, representing markedly increased thermal stability. A combination of NMR spectroscopy and computational modeling suggests that the diglyme molecules bind in a tridentate manner for this cluster, resulting in a binding energy of 35.2 kcal mol-1 for diglyme, which is comparable to the value of ∼40 kcal mol-1 for thiolates. IR and optical spectroscopies show no evidence of assembly of this cluster, in contrast to Au20(PET)15(DG), which readily assembles into dimeric species, which is consistent with a tridentate binding motif. Evidence for stacking among Au-bound and non-bound diglyme molecules is inferred from thermal and mass analysis.

7.
J Phys Chem Lett ; 12(31): 7531-7536, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34347490

RESUMO

Near-infrared photoluminescence of a series of three gold monolayer protected clusters (MPCs) with volumes spanning 50-200 Å3 was studied by using variable-temperature photoluminescence (VT-PL) spectroscopy. The three MPCs, which included Au20(SC8H9)15-diglyme, Au25(SC8H9)18, and Au38(SC12H25)24, all exhibited temperature-dependent intensities that reflected a few-millielectronvolt energy gap that separated bright emissive and dark nonradiative electronic states. All clusters showed increased PL intensities upon raising the sample temperature from 4.5 K to a cluster-specific value, upon which increased sample temperature resulted in emission quenching. The increased PL in the low-temperature range is attributed to thermally activated carrier transfer from dark to bright states. The quenching at elevated temperatures is attributed to nonradiative vibrational relaxation through Au-Au stretching of the MPCs metal core. Importantly, the results show evidence of a common and size scalable metal-centered intraband PL mechanism that is general for ultrasmall metal nanoclusters, which are expected to show nonscalable optical properties.

8.
Sci Rep ; 11(1): 6070, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727669

RESUMO

The majority of biological processes are regulated by enzymes, precise control over specific enzymes could create the potential for controlling cellular processes remotely. We show that the thermophilic enzyme thermolysin can be remotely activated in 17.76 MHz radiofrequency (RF) fields when covalently attached to 6.1 nm gold coated magnetite nanoparticles. Without raising the bulk solution temperature, we observe enzyme activity as if the solution was 16 ± 2 °C warmer in RF fields-an increase in enzymatic rate of 129 ± 8%. Kinetics studies show that the activity increase of the enzyme is consistent with the induced fit of a hot enzyme with cold substrate.


Assuntos
Ouro/química , Temperatura Alta , Nanopartículas de Magnetita/química , Ondas de Rádio , Termolisina/química
9.
Small ; 17(27): e2004078, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33174675

RESUMO

The synthesis and characterization of RhAu24 (PET)18 (PET = 2-phenylethanethiol) is described. The cluster is cosynthesized with Au25 (PET)18 and rhodium thiolates in a coreduction of RhCl3 , HAuCl4 , and PET. Rapid decomposition of RhAu24 (PET)18 occurs when purified from the other reaction products, precluding the study of isolated cluster. Mixtures containing RhAu24 (PET)18 , Au25 (PET)18 , and rhodium thiolates are therefore characterized. Mass spectrometry, X-ray photoelectron spectroscopy, and chromatography methods suggest a combination of charge-charge and metallophilic interactions among Au25 (PET)181- , rhodium thiolates and RhAu24 (PET)18 resulting in stabilization of RhAu24 (PET)18 . The charge of RhAu24 (PET)18 is assigned as 1+ on the basis of its stoichiometric 1:1 presence with anionic Au25 (PET)18 , and its stability is contextualized within the superatom electron counting rules. This analysis concludes that the Rh atom absorbs one superatomic electron to close its d-shell, giving RhAu24 (PET)181+ a superatomic electron configuration of 1S2 1P4 . Overall, an updated framework for rationalizing open d-shell heterometal dopant electronics in thiolated gold nanoclusters emerges.


Assuntos
Ouro , Tomografia por Emissão de Pósitrons
10.
FEMS Microbiol Ecol ; 97(1)2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33377161

RESUMO

A Rhodococcus erythropolis bacterium that tolerates normally lethal concentrations of Fe(II), Cu(II), AsO32-, SeO32-, TeO32-, Cd(II) and Zn(II) was identified from an environmental isolate. In characterizing the molecular basis for metal tolerance, a mycothione reductase (Mtr) with remarkable selectivity for TeO32- reduction over SeO32- was identified. In equimolar concentrations of TeO32- and SeO32-, the enzymatic product contains a 7-fold excess of Te. This selectivity is remarkable because the standard reduction potential of SeO32- is 0.20 V more favorable for reduction than TeO32. Selectivity of the enzyme for TeO32- decreases with increasing assay pH. Homology modeling of the enzyme identifies four aromatic residues near the active site, including two histidine residues, that are not present in a related SeO32- preferring reductase. On the basis of more favorable π-interactions for Te than for Se and the pH dependence of the selectivity, the Te-selectivity is attributed in part to these aromatic residues. The resulting Te0 enzymatic product resembles Te nanowires.


Assuntos
Rhodococcus , Oxirredutases/genética , Rhodococcus/genética
11.
ACS Chem Biol ; 15(7): 1987-1995, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32568515

RESUMO

A selenium nanoparticle binding peptide was isolated from a phage display library and genetically fused to a metalloid reductase that reduces selenite (SeO32-) to a Se0 nanoparticle (SeNP) form. The fusion of the Se binding peptide to the metalloid reductase regulates the size of the resulting SeNP to ∼35 nm average diameter, where without the peptide, SeNPs grow to micron sized polydisperse precipitates. The SeNP product remains associated with the enzyme/peptide fusion. The Se binding peptide fusion to the enzyme increases the enzyme's SeO32- reductase activity. Size control of particles was diminished if the Se binding peptide was only added exogenously to the reaction mixture. The enzyme-peptide construct shows preference for binding smaller SeNPs. The peptide-SeNP interaction is attributed to His based ligation that results in a peptide conformational change on the basis of Raman spectroscopy.


Assuntos
Proteínas de Transporte/metabolismo , Nanopartículas/metabolismo , Oxirredutases/metabolismo , Ácido Selenioso/química , Selênio/metabolismo , Proteínas de Transporte/química , Nanopartículas/química , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Oxirredução , Oxirredutases/química , Tamanho da Partícula , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Selênio/química
12.
Nanoscale ; 12(11): 6239-6242, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32150189

RESUMO

Acetylide-protected gold nanoclusters represent a recently described class of nanocluster compounds that are computationally predicted to be more stable than well-studied thiolate-protected clusters. Ligand exchange of thiolates-for-acetylides on these clusters as well as the reverse reaction are so-far unknown. Such reactions can inform a practical understanding of stability and other differences between thiolate- and acetylide-protected gold clusters. Here it is shown that acetylide-for-thiolate ligand exchange is facile when using either a lithium phenylacetylide or a gold(i)-phenylacetylide complex as incoming ligand to thiolate-protected gold clusters, whereas the reaction fails when using phenylacetylene. Both partial and full exchange are possible, as is the reverse reaction. While the overall reaction resembles ligand exchange, it may be better described as a metathesis reaction. Notably, while the simple thiolate-for-acetylide exchange reaction is enthalpically unfavorable, metathesis reactions between these ligands are enthalpically favorable. Intercluster exchange is also observed between thiolate-protected and acetylide-protected clusters.

13.
Inorg Chem ; 59(6): 3509-3512, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32090558

RESUMO

Gold nanoclusters show distinctive magnetic properties and electronic structure. Nanoclusters of sufficiently small size restructure geometrically to stabilize electronically (e.g., a Jahn-Teller effect), whereas geometric distortion may not be possible in larger nanoclusters. In this work, the charge-state-dependent magnetism of the Au102(SPh)441-/0/1+/2+ nanocluster is investigated through Evans method NMR measurements. The 2+ charge state is shown as paramagnetic. This suggests that the nanocluster does not distort geometrically to pair electrons. Because the nanocluster lies within the transition range of molecule-like to bulk-like properties, this suggests that the geometric stabilization that becomes important in larger "magic number clusters" may be resistant to electronically driven distortions observed in smaller nanoclusters.

14.
Acta Crystallogr A Found Adv ; 76(Pt 1): 24-31, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31908346

RESUMO

A novel approach for finding and evaluating structural models of small metallic nanoparticles is presented. Rather than fitting a single model with many degrees of freedom, libraries of clusters from multiple structural motifs are built algorithmically and individually refined against experimental pair distribution functions. Each cluster fit is highly constrained. The approach, called cluster-mining, returns all candidate structure models that are consistent with the data as measured by a goodness of fit. It is highly automated, easy to use, and yields models that are more physically realistic and result in better agreement to the data than models based on cubic close-packed crystallographic cores, often reported in the literature for metallic nanoparticles.

15.
J Chem Phys ; 150(10): 101102, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30876360

RESUMO

Electronic spin-state dynamics were studied for a series of Au25(SC8H9)18 q and Au24Pd(SC8H9)18 monolayer-protected clusters (MPCs) prepared in a series of oxidation states, q, including q = -1, 0, +1. These clusters were chosen for study because Au25(SC8H9)18 -1 is a closed-shell superatomic cluster, but Au25(SC8H9)18 0 is an open-shell (7-electron) system; Au25(SC8H9)18 +1 and PdAu24(SC8H9)18 0 are isoelectronic (6-electron) closed-shell systems. Carrier dynamics for electronic fine structure spin states were isolated using femtosecond time-resolved circularly polarized transient-absorption spectroscopy (fs-CPTA). Excitation energies of 1.82 eV and 1.97 eV were chosen for these measurements on Au25(SC8H9)18 0 in order to achieve resonance matching with electronic fine structure transitions within the superatomic P- and D-orbital manifolds; 1.82-eV excited an unpaired Pz electron to D states, whereas 1.97-eV was resonant with transitions between filled Px and Py subshells and higher-energy D orbitals. fs-CPTA measurements revealed multiple spin-polarized transient signals for neutral (open shell) Au25(SC8H9)18, following 1.82-eV excitation, which persisted for several picoseconds; time constants of 5.03 ± 0.38 ps and 2.36 ± 0.59 ps were measured using 2.43 and 2.14 eV probes, respectively. Polarization-dependent fs-CPTA measurements of PdAu24(SC8H9)18 clusters exhibit no spin-conversion dynamics, similar to the isoelectronic Au25(SC8H9)18 +1 counterpart. These observations of cluster-specific dynamics resulted from spin-polarized superatom P to D excitation, via an unpaired Pz electron of the open-shell seven-electron Au25(SC8H9)18 MPC. These results suggest that MPCs may serve as structurally well-defined prototypes for understanding spin and quantum state dynamics in nanoscale metal systems.

16.
J Phys Chem Lett ; 10(2): 189-193, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30582816

RESUMO

The low-temperature (0.35-4.2 K) steady-state electronic absorption of the monolayer-protected cluster (MPC) Au102( pMBA)44 was studied using magnetic circular dichroism (MCD) spectroscopy to investigate previously reported low-temperature (<50 K) magnetism in d10 nanogold systems. Variable-temperature variable-field analysis of resolvable MCD extinction components revealed two distinct magnetic anisotropic behaviors. A low-energy, diamagnetic component was correlated to excitation from states localized to the passivating ligands. A high-energy, paramagnetic component was attributed to excitation from the d-band of the Au core. The temperature dependence of the magnetic anisotropy for each component is discussed in terms of previously reported structural parameters of the atomically precise Au102( pMBA)44 MPC. It is concluded that temperature-sensitive structure-dependent Au d-d orbital interactions result in the promotion of 5d-band electrons to the 6sp-band via orbital rehybridization, inducing a 15× increase in the Landé g-factor over the temperature range spanning from 0.35 to 4.2 K.

17.
J Am Chem Soc ; 141(1): 309-314, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30532966

RESUMO

Ligand exchange is a fundamental reaction of metal nanoparticles. Multiple symmetry and kinetic exchange environments are observed for thiolate protected gold nanoparticles, but the correlation between these is unclear. Structural study of ligand exchange on chalcogenide passivated gold clusters has so-far revealed the locations of 10% or fewer of incoming ligands. In a set of 13 crystal structures, we reveal the locations of up to 17 ligands of the 18 ligands in thiolate for selenolate exchanged Au25(SeR)18- x(SR) x clusters. Overall, we see a distinct preference for the locations of thiolate and selenolate ligands that emerges over time. This most-comprehensive to-date structural study of ligand exchange on gold clusters evidences a structural basis for exchange of solvated ligands, exchange of ligands between clusters, and a net reaction that amounts to translation of ligands on the cluster surface.

18.
J Phys Chem C Nanomater Interfaces ; 123(44): 27187-27195, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34290844

RESUMO

The cellular machinery of metal metabolism is capable of making a wide range of inorganic nanoparticles and quantum dots. Individual enzymes from these metabolic pathways are being identified with metal reducing activity, and some have been isolated for in situ particle formation and labeling. We previously identified a glutathione reductase like metalloid reductase (GRLMR) from Pseudomonas Moravenis stanleyae with a high affinity for the bioavailable selenium thiolate selenodiglutatione, and exhibiting NADPH-dependent reduction of selenodiglutathione to Se(0); initiating the growth of pure selenium metal nanoparticles. In this study, we demonstrate that the GRLMR enzyme can further reduce selenium to a Se(2-) oxidative state, which is capable of nucleating with Cd(2+) to rapidly form CdSe quantum dots. We show that GRLMR can outcompete background sources of cellular selenium reduction (such as glutathione) and can control the kinetics of quantum dot formation in complex media. The resulting particles are smaller diameter, with a distinguishingly shifted emission spectra and superior FWHM. This study indicates that there is great potential for using GRLMR to study and design enzymes capable of controlled biosynthesis of nanoparticles and quantum dots; paving the way for cellularly assembled nanoparticle-biosensors and reporters.

19.
ACS Omega ; 3(11): 14902-14909, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30533575

RESUMO

A glutathione reductase (GSHR)-like enzyme in Pseudomonas moraviensis stanleyae was previously implicated as underlying the bacterium's remarkable SeO3 2- tolerance. Herein, this enzyme is sequenced, recombinantly expressed, and fully characterized. The enzyme is highly adapted for selenodiglutathione substrates (K m = 336 µM) compared to oxidized glutathione (K m = 8.22 mM). The recombinant expression of this enzyme in the laboratory strains of Escherichia coli conveys a 10-fold increase in IC90 for SeO3 2-. Moreover, selenium nanoparticles are observed when the enzyme is overexpressed in the cells exposed to SeO3 2-, but not in the corresponding no-enzyme controls. The analyses of the structural homology models of the enzyme reveal changes in the parts of the enzyme associated with product release, which may underlie the Se substrate specialization. Combined, the observations of adaptation to Se reduction over oxidized glutathione reduction as well as the portability of this nanoparticle-mediated SeO3 2- tolerance into other cell lines suggest that the P. moraviensis GSHR may be better described as a GSHR-like metalloid reductase.

20.
J Phys Chem Lett ; 9(7): 1516-1521, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29521094

RESUMO

Gold nanoparticles in radiofrequency (RF) fields have been observed to heat. There is some debate over the mechanism of heating. Au25(SR)18 in RF is studied for the mechanistic insights obtainable from precise synthetic control over exact charge, size, and spin for this nanoparticle. An electrophoretic mechanism can adequately account for the observed heat. This study adds a new level of understanding to gold particle heating experiments, allowing for the first time a conclusive connection between theoretical and experimentally observed heating rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA