RESUMO
The members of the NSD subfamily of lysine methyl transferases are compelling oncology targets due to the recent characterization of gain-of-function mutations and translocations in several hematological cancers. To date, these proteins have proven intractable to small molecule inhibition. Here, we present initial efforts to identify inhibitors of MMSET (aka NSD2 or WHSC1) using solution phase and crystal structural methods. On the basis of 2D NMR experiments comparing NSD1 and MMSET structural mobility, we designed an MMSET construct with five point mutations in the N-terminal helix of its SET domain for crystallization experiments and elucidated the structure of the mutant MMSET SET domain at 2.1 Å resolution. Both NSD1 and MMSET crystal systems proved resistant to soaking or cocrystallography with inhibitors. However, use of the close homologue SETD2 as a structural surrogate supported the design and characterization of N-alkyl sinefungin derivatives, which showed low micromolar inhibition against both SETD2 and MMSET.
Assuntos
Adenosina/análogos & derivados , Epigênese Genética , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Oncogenes , Proteínas Repressoras/antagonistas & inibidores , Adenosina/química , Adenosina/farmacologia , Sítios de Ligação , Calorimetria , Cromatografia Líquida , Cristalografia por Raios X , Desenho de Fármacos , Histona-Lisina N-Metiltransferase/genética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Conformação Proteica , Proteínas Repressoras/genéticaRESUMO
The de novo pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase is an emerging drug target for the treatment of malaria. In this context a key property of Plasmodium falciparum DHODH (PfDHODH) is that it can be selectively inhibited over its human homologue (HsDHODH). However, HsDHODH is also a validated drug target for autoimmune diseases such as arthritis. Here a series of novel inhibitors is described that includes compounds that switch specificity between the two enzymes as a result of small alterations in chemical structure. Structure-activity relationship (SAR), crystallography, docking, and mutagenesis studies are used to examine the binding modes of the compounds within the two enzymes and to reveal structural changes induced by inhibitor binding. Within this series, compounds with therapeutically relevant HsDHODH activity are described and their binding modes characterized using X-ray crystallography, which reveals a novel conformational shift within the inhibitor binding site.