Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 23(7): 1842-55, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24234655

RESUMO

Mutations in fukutin-related protein (FKRP) underlie a group of muscular dystrophies associated with the hypoglycosylation of α-dystroglycan (α-DG), a proportion of which show central nervous system involvement. Our original FKRP knock-down mouse (FKRP(KD)) replicated many of the characteristics seen in patients at the severe end of the dystroglycanopathy spectrum but died perinatally precluding its full phenotyping and use in testing potential therapies. We have now overcome this by crossing FKRP(KD) mice with those expressing Cre recombinase under the Sox1 promoter. Owing to our original targeting strategy, this has resulted in the restoration of Fkrp levels in the central nervous system but not the muscle, thereby generating a new model (FKRP(MD)) which develops a progressive muscular dystrophy resembling what is observed in limb girdle muscular dystrophy. Like-acetylglucosaminyltransferase (LARGE) is a bifunctional glycosyltransferase previously shown to hyperglycosylate α-DG. To investigate the therapeutic potential of LARGE up-regulation, we have now crossed the FKRP(MD) line with one overexpressing LARGE and show that, contrary to expectation, this results in a worsening of the muscle pathology implying that any future strategies based upon LARGE up-regulation require careful management.


Assuntos
Distroglicanas/metabolismo , N-Acetilglucosaminiltransferases/biossíntese , N-Acetilglucosaminiltransferases/genética , Proteínas/genética , Síndrome de Walker-Warburg/genética , Animais , Membrana Basal/metabolismo , Membrana Basal/patologia , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Glicosilação , Laminina/biossíntese , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Pentosiltransferases , Transferases , Regulação para Cima , Síndrome de Walker-Warburg/mortalidade
2.
J Neurosci ; 31(36): 12927-35, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21900571

RESUMO

Mutations in fukutin-related protein (FKRP) are responsible for a common group of muscular dystrophies ranging from adult onset limb girdle muscular dystrophies to severe congenital forms with associated structural brain involvement. The defining feature of this group of disorders is the hypoglycosylation of α-dystroglycan and its inability to effectively bind extracellular matrix ligands such as laminin α2. However, α-dystroglycan has the potential to interact with a number of laminin isoforms many of which are basement membrane/tissue specific and developmentally regulated. To further investigate this we evaluated laminin α-chain expression in the cerebral cortex and eye of our FKRP knock-down mouse (FKRP(KD)). These mice showed a marked disturbance in the deposition of laminin α-chains including α1, α2, α4, and α5, although only laminin α1- and γ1-chain mRNA expression was significantly upregulated relative to controls. Moreover, there was a diffuse pattern of laminin deposition below the pial surface which correlated with an abrupt termination of many of the radial glial cells. This along with the pial basement membrane defects, contributed to the abnormal positioning of both early- and late-born neurons. Defects in the inner limiting membrane of the eye were associated with a reduction of laminin α1 demonstrating the involvement of the α-dystroglycan:laminin α1 axis in the disease process. These observations demonstrate for the first time that a reduction in Fkrp influences the ability of tissue-specific forms of α-dystroglycan to direct the deposition of several laminin isoforms in the formation of different basement membranes.


Assuntos
Química Encefálica/genética , Olho/metabolismo , Laminina/metabolismo , Proteínas/fisiologia , Animais , Apoptose/fisiologia , Membrana Basal/efeitos dos fármacos , Membrana Basal/metabolismo , Movimento Celular/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , Distroglicanas/metabolismo , Glicosilação , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Neurônios/fisiologia , Pentosiltransferases , Fenótipo , Proteínas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/fisiologia , Transferases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA