Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37200108

RESUMO

Heterogeneity in human immune responses is difficult to model in standard laboratory mice. To understand how host variation affects Bacillus Calmette Guerin-induced (BCG-induced) immunity against Mycobacterium tuberculosis, we studied 24 unique collaborative cross (CC) mouse strains, which differ primarily in the genes and alleles they inherit from founder strains. The CC strains were vaccinated with or without BCG and challenged with aerosolized M. tuberculosis. Since BCG protects only half of the CC strains tested, we concluded that host genetics has a major influence on BCG-induced immunity against M. tuberculosis infection, making it an important barrier to vaccine-mediated protection. Importantly, BCG efficacy is dissociable from inherent susceptibility to tuberculosis (TB). T cell immunity was extensively characterized to identify components associated with protection that were stimulated by BCG and recalled after M. tuberculosis infection. Although considerable diversity is observed, BCG has little impact on the composition of T cells in the lung after infection. Instead, variability is largely shaped by host genetics. BCG-elicited protection against TB correlated with changes in immune function. Thus, CC mice can be used to define correlates of protection and to identify vaccine strategies that protect a larger fraction of genetically diverse individuals instead of optimizing protection for a single genotype.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Humanos , Vacina BCG/genética , Tuberculose/genética , Tuberculose/prevenção & controle , Mycobacterium tuberculosis/genética , Patrimônio Genético
2.
Sci Transl Med ; 11(518)2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723037

RESUMO

Micronutrient deficiencies affect up to 2 billion people and are the leading cause of cognitive and physical disorders in the developing world. Food fortification is effective in treating micronutrient deficiencies; however, its global implementation has been limited by technical challenges in maintaining micronutrient stability during cooking and storage. We hypothesized that polymer-based encapsulation could address this and facilitate micronutrient absorption. We identified poly(butylmethacrylate-co-(2-dimethylaminoethyl)methacrylate-co-methylmethacrylate) (1:2:1) (BMC) as a material with proven safety, offering stability in boiling water, rapid dissolution in gastric acid, and the ability to encapsulate distinct micronutrients. We encapsulated 11 micronutrients (iron; iodine; zinc; and vitamins A, B2, niacin, biotin, folic acid, B12, C, and D) and co-encapsulated up to 4 micronutrients. Encapsulation improved micronutrient stability against heat, light, moisture, and oxidation. Rodent studies confirmed rapid micronutrient release in the stomach and intestinal absorption. Bioavailability of iron from microparticles, compared to free iron, was lower in an initial human study. An organotypic human intestinal model revealed that increased iron loading and decreased polymer content would improve absorption. Using process development approaches capable of kilogram-scale synthesis, we increased iron loading more than 30-fold. Scaled batches tested in a follow-up human study exhibited up to 89% relative iron bioavailability compared to free iron. Collectively, these studies describe a broad approach for clinical translation of a heat-stable ingestible micronutrient delivery platform with the potential to improve micronutrient deficiency in the developing world. These approaches could potentially be applied toward clinical translation of other materials, such as natural polymers, for encapsulation and oral delivery of micronutrients.


Assuntos
Temperatura Alta , Micronutrientes/administração & dosagem , Microesferas , Administração Oral , Animais , Disponibilidade Biológica , Transporte Biológico , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Feminino , Humanos , Ácido Hialurônico/química , Absorção Intestinal , Intestinos/fisiologia , Ferro/metabolismo , Metacrilatos/química , Camundongos , Oxirredução , Raios Ultravioleta , Vitamina A/metabolismo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA