Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Methods Mol Biol ; 2699: 125-159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646997

RESUMO

Proteins are essential for various functions such as brain activity and muscle contraction in humans. Even though food is a source of proteins, the bioavailability of proteins in most foods is usually limited due to matrix interaction with other biomolecules. Thus, it is essential to extract these proteins and provide them as a nutraceutical supplement to maintain protein levels and avoid protein deficiency. Hence, protein purification and extraction from natural sources are highly significant in biomedical applications. Chromatography, crude mechanical disruption, use of extractive chemicals, and electrophoresis are some of the methods applied to isolate specific proteins. Even though these methods possess several advantages, they are unable to extract specific proteins with high purity. A suitable alternative is the use of nanoparticles, which can be beneficial in protein purification and extraction. Notably, magnetic iron and iron-based nanoparticles have been employed in protein extraction processes and can be reused via demagnetization due to their magnetic property, smaller size, morphology, high surface-to-volume ratio, and surface charge-mediated property. This chapter is a summary of various magnetic nanoparticles (MNPs) that can be used for the biomolecular separation of proteins.


Assuntos
Nanopartículas de Magnetita , Humanos , Disponibilidade Biológica , Cromatografia de Afinidade , Suplementos Nutricionais , Ferro
2.
Gels ; 8(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36286142

RESUMO

Egg white protein hydrolysate generated with pepsin was investigated for the presence of peptides with self-assembly and hydrogelation properties. Incubation of the hydrolysates for 16 h resulted in aggregates with significantly (p < 0.05) lower free amino nitrogen and sulfhydryl contents, and higher particle diameter and surface hydrophobicity compared to the hydrolysates. LC-MS/MS analysis of the aggregates resulted in identification of 429 ovalbumin-derived peptides, among which the top-six aggregation-prone peptides IFYCPIAIM, NIFYCPIAIM, VLVNAIVFKGL, YCPIAIMSA, MMYQIGLF, and VYSFSLASRL were predicted using AGGRESCAN by analysis of the aggregation "Hot Spots". NIFYCPIAIM had the highest thioflavin T fluorescence intensity, particle diameter (5611.3 nm), and polydispersity index (1.0) after 24 h, suggesting the formation of ß-sheet structures with heterogeneous particle size distribution. Transmission electron microscopy of MMYQIGLF, and VYSFSLASRL demonstrated the most favorable peptide self-assembly, based on the formation of densely packed, intertwined fibrils. Rheological studies confirmed the viscoelastic and mechanical properties of the hydrogels, with IFYCPIAIM, NIFYCPIAIM, VLVNAIVFKGL, and VYSFSLASRL forming elastic solid hydrogels (tan δ < 1), while YCPIAIMSA and MMYQIGLF formed viscous liquid-like hydrogels (tan δ > 1). The results provide valuable insight into the influence of peptide sequence on hydrogelation and self-assembly progression, and prospects of food peptides in biomaterial applications.

3.
J Nanostructure Chem ; 12(5): 809-831, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35070207

RESUMO

Numerous viral infections are common among humans, and some can lead to death. Even though conventional antiviral agents are beneficial in eliminating viral infections, they may lead to side effects or physiological toxicity. Silver nanoparticles and nanocomposites have been demonstrated to possess inhibitory properties against several pathogenic microbes, including archaea, bacteria, fungi, algae, and viruses. Its pronounced antimicrobial activity against various microbe-mediated diseases potentiates its use in combating viral infections. Notably, the appropriated selection of the synthesis method to fabricate silver nanoparticles is a major factor for consideration as it directly impacts antiviral efficacy, level of toxicity, scalability, and environmental sustainability. Thus, this article presents and discusses various synthesis approaches to produce silver nanoparticles and nanocomposites, providing technological insights into selecting approaches to generate antiviral silver-based nanoparticles. The antiviral mechanism of various formulations of silver nanoparticles and the evaluation of its propensity to combat specific viral infections as a potential antiviral agent are also discussed.

4.
Crit Rev Food Sci Nutr ; 62(8): 2158-2171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33317324

RESUMO

Diabetes mellitus, particularly type 2 diabetes, is a major global health issue, the prevalence of which seems to be on the rise worldwide. Interventions such as healthy diet, physical activity, maintaining a healthy weight, and medication (for those with a diagnosis of diabetes) are among the most effective strategies to prevent and control diabetes. Three-quarters of patients diagnosed with diabetes are in countries with poor financial infrastructure, nutritional awareness and health care systems. Concomitantly, the cost involved in managing diabetes through the intake of antidiabetic drugs makes it prohibitive for majority of patients. Food protein-derived bioactive peptides have the potential of being formulated as nutraceuticals and drugs in combating the pathogenesis and pathophysiology of metabolic disorders with little or "no known" complications in humans. Coupled with lifestyle modifications, the potential of bioactive peptides to maintain normoglycemic range is actualized by influencing the activities of incretins, DPP-IV, α-amylase, and α-glucosidase enzymes. This article discusses the biofunctionality and clinical implications of anti-diabetic bioactive peptides in controlling the global burden of diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/prevenção & controle , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Incretinas , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico , alfa-Glucosidases/metabolismo
5.
Food Funct ; 12(8): 3552-3561, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33900305

RESUMO

Consumption of milk-derived whey proteins has been demonstrated to have insulin-sensitizing effects in mice and humans, in part through the generation of bioactive whey peptides. While whey peptides can prevent insulin resistance in vitro, it is unclear whether consumption of whey peptides can prevent obesity-induced metabolic dysfunction in vivo. We sought to determine whether whey peptides consumption can protect from high fat (HF) diet-induced obesity and dysregulation of glucose homeostasis. Male C57BL/6J mice were fed either a low or HF diet for 13 weeks. HF diet fed mice were provided drinking water with no addition (control), undigested whey protein isolate (WPI, 1 mg ml-1) or whey protein hydrolysate (WPH, 1 mg ml-1) throughout the diet regimen. Mice consuming WPH gained more body weight and were more glucose intolerant compared to those consuming WPI or water only. Despite increased body weight gain, perigonadal adipose tissue weight and lipid accumulation were unchanged. However, excess lipids accumulated ectopically in the liver and skeletal muscle in mice consuming WPH, which was associated with elevated inflammatory markers systemically and in adipose tissue, liver, and skeletal muscle. In skeletal muscle, mitochondrial fat oxidation and electron transport chain proteins were decreased with WPH consumption, indicative of mitochondrial dysfunction. Taken together, our results demonstrate that WPH, but not WPI, exacerbates HF-induced body weight gain and impairs glucose homeostasis, which is accompanied by increased inflammation, ectopic fat accumulation and mitochondrial dysfunction. Thus, our results argue against the use of dietary whey peptide supplementation as a preventative option against HF diet-induced metabolic dysfunction.


Assuntos
Obesidade/metabolismo , Aumento de Peso/efeitos dos fármacos , Proteínas do Soro do Leite/farmacologia , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Glucose/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Proteínas do Soro do Leite/administração & dosagem
6.
Cell Mol Bioeng ; 14(3): 209-221, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33488836

RESUMO

INTRODUCTION: The 2019-novel coronavirus disease (COVID-19) is an intractable global health challenge resulting in an aberrant rate of morbidity and mortality worldwide. The mode of entry for SARS-CoV-2 into host cells occurs through clathrin-mediated endocytosis. As part of the efforts to mitigate COVID-19 infections, rapid and accurate detection methods, as well as smart vaccine and drug designs with SARS-CoV-2 targeting capabilities are critically needed. This systematic review aimed to present a good mapping between the structural and functional characteristics of aptamers and their potential applications in COVID-19 theranostics. METHODS: In this study, extensive discussions into the potential development of aptameric systems as robust theranostics for rapid mitigation of the virulent SARS-CoV-2 was made. Information required for this study were extracted from a systematic review of literature in PubMed, SCOPUS, Web of Science (WOS), and other official related reports from reputable organisations. RESULTS: The global burden of COVID-19 pandemic was discussed including the progress in rapid detection, repurposing of existing antiviral drugs, and development of prophylactic vaccines. Aptamers have highly specific and stable target binding characteristics which can be generated and engineered with less complexity for COVID-19 targeted theranostic applications. CONCLUSIONS: There is an urgent need to develop safe innovative biomedical technologies to mitigate the dire impact of COVID-19 on public health worldwide. Research advances into aptameric systems bode well with the fact that they can be engineered for the development of effective and affordable diagnostics, therapeutics and prophylactic vaccines for SARS-CoV-2 and other infectious pathogens.

7.
Food Chem ; 345: 128783, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33316714

RESUMO

Egg is the second most common food allergen among infants and young children. This work investigated the influence of plastein reaction on immunoglobulin E (IgE)-binding activities of egg white protein hydrolysates after simulated gastrointestinal (GIT) digestion. Compared to hydrolysate precursors, the IgE-binding activity of Pepsin-Plastein significantly decreased from 35 ± 7% to 8 ± 2% (P < 0.05), and Papain-Plastein from 70 ± 5% to 59 ± 4%. Further GIT hydrolysis of Pepsin-Plastein maintained the reduced IgE-binding activity (7 ± 3%) whereas Papain-Plastein digestion restored the IgE-binding reactivity to 66 ± 7%. This discrepancy is related to the different mechanisms of plastein formation. Covalent modifications (decreased free amino nitrogen and sulfhydryl contents) provided biostability for Pepsin-Plastein, whereas hydrophobic interactions (increased surface hydrophobicity) mainly contributed to Papain-Plastein formation. The latter can be destroyed during GIT digestion leading to re-exposure of hidden IgE-binding epitopes. Taken together, plastein reaction is a promising strategy for inducing structural modifications that reduce the immune reactivity of allergenic proteins.


Assuntos
Digestão , Proteínas do Ovo/metabolismo , Imunoglobulina E/metabolismo , Hidrolisados de Proteína/metabolismo , Alérgenos/metabolismo , Criança , Pré-Escolar , Hipersensibilidade Alimentar , Humanos , Interações Hidrofóbicas e Hidrofílicas , Pepsina A/metabolismo , Ligação Proteica
8.
Curr Res Food Sci ; 2: 61-69, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32914112

RESUMO

This study investigated the properties of films or bioplastics fabricated using a wet processing method from yellow pea protein isolate (YPI) and protein concentrate (YPC) for potential application in food packaging. The wet processing method included mixing the protein with water and glycerol followed by casting and drying the films in a humidity- and temperature-controlled chamber. Whey protein isolate (WPI) and a film from a blend of equal amounts of YPI and WPI, labelled as YPI + WPI, were also studied. Fourier transform-infra red analysis revealed that films from YPI, YPC, WPI and YPI + WPI were formed by protein polymerisation with the plasticiser, glycerol, via hydrophobic and hydrophilic interactions. The protein films had contact angles of <90° demonstrating that they had a hydrophilic surface, with YPC < YPI < YPI + WPI < WPI. The pattern of ultraviolent light transmission of the films was WPI > YPC > YPI + WPI > YPI, whereas the mechanical and thermal resilience of films formulated from YPI, YPC and the protein blend were comparable to the properties of WPI-based films. The findings demonstrate that yellow pea proteins can be used as biomaterials to develop protein and protein-blend films or bioplastics for food packaging and edible applications.

9.
Crit Rev Food Sci Nutr ; 60(7): 1195-1206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30714390

RESUMO

The food and health applications of bioactive peptides have grown remarkably in the past few decades. Current elucidations have shown that bioactive peptides have unique structural arrangement of amino acids, conferring distinct functionalities, and molecular affinity characteristics. However, whereas interest in the biological potency of bioactive peptides has grown, cost-effective techniques for monitoring the structural changes in these peptides and how these changes affect the biological properties have not grown at the same rate. Due to the high binding affinity of aptamers for other biomolecules, they have a huge potential for use in tracking the structural, conformational, and compositional changes in bioactive peptides. This review provides an overview of bioactive peptides and their essential structure-activity relationship. The review further highlights on the types and methods of synthesis of aptamers before the discussion of the prospects, merits, and challenges in the use of aptamers for bioaffinity interactions with bioactive peptides.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/síntese química , Peptídeos/química , Ligantes , Conformação Molecular , Relação Estrutura-Atividade
10.
Sci Rep ; 9(1): 14501, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601836

RESUMO

Immobilisation of aptameric ligands on solid stationary supports for effective binding of target molecules requires understanding of the relationship between aptamer-polymer interactions and the conditions governing the mass transfer of the binding process. Herein, key process parameters affecting the molecular anchoring of a thrombin-binding aptamer (TBA) onto polymethacrylate monolith pore surface, and the binding characteristics of the resulting macroporous aptasensor were investigated. Molecular dynamics (MD) simulations of the TBA-thrombin binding indicated enhanced Guanine 4 (G4) structural stability of TBA upon interaction with thrombin in an ionic environment. Fourier-transform infrared spectroscopy and thermogravimetric analyses were used to characterise the available functional groups and thermo-molecular stability of the immobilised polymer generated with Schiff-base activation and immobilisation scheme. The initial degradation temperature of the polymethacrylate stationary support increased with each step of the Schiff-base process: poly(Ethylene glycol Dimethacrylate-co-Glycidyl methacrylate) or poly(EDMA-co-GMA) [196.0 °C (±1.8)]; poly(EDMA-co-GMA)-Ethylenediamine [235.9 °C (±6.1)]; poly(EDMA-co-GMA)-Ethylenediamine-Glutaraldehyde [255.4 °C (±2.7)]; and aptamer-modified monolith [273.7 °C (±2.5)]. These initial temperature increments reflected in the associated endothermic energies were determined with differential scanning calorimetry. The aptameric ligand density obtained after immobilisation was 480 pmol/µL. Increase in pH and ionic concentration affected the surface charge distribution and the binding characteristics of the aptamer-modified disk-monoliths, resulting in the optimum binding pH and ionic concentration of 8.0 and 5 mM Mg2+, respectively. These results are critical in understanding and setting parametric constraints indispensable to develop and enhance the performance of aptasensors.

11.
J Food Biochem ; 43(1): e12765, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-31353493

RESUMO

The application of proteomic and peptidomic technologies for food-derived bioactive peptides is an emerging field in food sciences. These technologies include the use of separation tools coupled to a high-resolution spectrometric and bioinformatic tools for prediction, identification, sequencing, and characterization of peptides. To a large extent, one-dimensional separation technologies have been extensively used as a continuous tool under different optimized conditions for the identification and analysis of food peptides. However, most one-dimensional separation technologies are fraught with significant bottlenecks such as insufficient sensitivity and specificity limits for complex samples. To address this limitation, separation systems based on orthogonal, multidimensional principles, which allow for the coupling of more than one analytical separation tool with different operational principles, provide a higher separation power than one-dimensional separation tools. This review describes the structure-informed separation and purification of protein hydrolyzates to obtain peptides with desirable bioactivities. PRACTICAL APPLICATIONS: Application of bioactive peptides in the formulation of functional foods, nutraceuticals, and therapeutic agents have increasingly gained scholarly and industrial attention. The bioactive peptides exist originally in protein sources and are only active after hydrolysis of the parent protein. Currently, several tools can be configured in one-dimensional or multidimensional systems for the separation and purification of protein hydrolyzates. The separations are informed by the structural properties such as the molecular weight, charge, hydrophobicity or hydrophilicity, and the solubility of peptides. This review provides a concise discussion on the commonly used analytical tools, their configurations, advantages and challenges in peptide separation. Emphasis is placed on how the structural properties of peptides assist in the separation and purification processes and the concomitant effect of the separation on peptide bioactivity.


Assuntos
Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Alimento Funcional , Peptídeos/química , Conformação Proteica , Proteólise , Proteômica/métodos , Relação Estrutura-Atividade
12.
J Food Biochem ; 43(1): e12482, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-31353495

RESUMO

Peptides with biological properties, that is, bioactive peptides, are a class of biomolecules whose health-promoting properties are increasingly being exploited in food and health products. However, research on targeted techniques for the detection and quantification of these peptides is still in its infancy. Such information is needed in order to enhance the biological and chemometric characterization of peptides and their subsequent application in the functional food and pharmaceutical industries. In this review, the role of classic techniques such as electrophoretic, chromatographic, and peptide mass spectrometry in the structure-informed detection and quantitation of bioactive peptides are discussed. Prospects for the use of aptamers in the characterization of bioactive peptides are also discussed. PRACTICAL APPLICATIONS: Although bioactive peptides have huge potential applications in the functional foods and health area, there are limited techniques in enhancing throughput detection, quantification, and characterization of these peptides. This review discusses state-of-the-art techniques relevant in complementing bioactive detection and profiling irrespective of the small number of amino acid units. Insights into challenges, possible remedies and prevailing areas requiring thorough research in the extant literature for food chemists and biotechnologists are also presented.


Assuntos
Líquidos Corporais/química , Proteínas Alimentares/química , Peptídeos/análise , Aptâmeros de Nucleotídeos/química , Cromatografia Líquida/métodos , Eletroforese Capilar/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Alimento Funcional/análise , Humanos , Espectrometria de Massas/métodos , Peptídeos/química , Peptídeos/farmacologia , Conformação Proteica , Relação Estrutura-Atividade
13.
Biochimie ; 157: 204-212, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30513369

RESUMO

Biocarriers are pivotal in enhancing the reusability of biocatalyst that would otherwise be less economical for industrial application. Ever since the induction of enzymatic technology, varied materials have been assessed for their biocompatibility with enzymes of distinct functionalities. Herein, cellulase was immobilized onto polymethacrylate particles (ICP) as the biocarrier grafted with ethylenediamine (EDA) and glutaraldehyde (GA). Carboxymethyl cellulose (CMC) was used as a model substrate for activity assay. Enzyme immobilization loading was determined by quantifying the dry weight differential of ICP (pre-& post-immobilization). Cellulase was successfully demonstrated to be anchored upon ICP and validated by FTIR spectra analysis. The optimal condition for cellulase immobilization was determined to be pH 6 at 20 °C. The maximum CMCase activity was achieved at pH 5 and 50 °C. Residual activity of ∼50% was retained after three iterations and dipped to ∼18% on following cycle. Also, ICP displayed superior pH adaptability as compared to free cellulase. The specific activity of ICP was 65.14 ±â€¯1.11% relative to similar amount of free cellulase.


Assuntos
Carboximetilcelulose Sódica/química , Celulase/química , Enzimas Imobilizadas/química , Ácidos Polimetacrílicos/química , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise
14.
Molecules ; 23(10)2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30250012

RESUMO

Flaxseeds (Linum usitatissimum L.) are oilseeds endowed with nutritional constituents such as lignans, lipids, proteins, fibre, carbohydrates, and micronutrients. Owing to their established high nutritional profile, flaxseeds have gained an established reputation as a dietary source of high value functional ingredients. Through the application of varied bioprocessing techniques, these essential constituents in flaxseeds can be made bioavailable for different applications such as nutraceuticals, cosmetics, and food industry. However, despite their food and health applications, flaxseeds contain high levels of phytotoxic compounds such as linatine, phytic acids, protease inhibitors, and cyanogenic glycosides. Epidemiological studies have shown that the consumption of these compounds can lead to poor bioavailability of essential nutrients and/or health complications. As such, these components must be removed or inactivated to physiologically undetectable limits to render flaxseeds safe for consumption. Herein, critical description of the types, characteristics, and bioprocessing of functional ingredients in flaxseed is presented.


Assuntos
Linho/química , Extratos Vegetais/química , Cosméticos , Suplementos Nutricionais , Indústria Alimentícia , Alimento Funcional , Extratos Vegetais/toxicidade
15.
Anal Bioanal Chem ; 410(2): 297-306, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28884330

RESUMO

Food-derived bioactive proteins and peptides have gained acceptance among researchers, food manufacturers and consumers as health-enhancing functional food components that also serve as natural alternatives for disease prevention and/or management. Bioactivity in food proteins and peptides is determined by their conformations and binding characteristics, which in turn depend on their primary and secondary structures. To maintain their bioactivities, the molecular integrity of bioactive peptides must remain intact, and this warrants the study of peptide form and structure, ideally with robust, highly specific and sensitive techniques. Short single-stranded nucleic acids (i.e. aptamers) are known to have high affinity for cognate targets such as proteins and peptides. Aptamers can be produced cost-effectively and chemically derivatized to increase their stability and shelf life. Their improved binding characteristics and minimal modification of the target molecular signature suggests their suitability for real-time detection of conformational changes in both proteins and peptides. This review discusses the developmental progress of systematic evolution of ligands by exponential enrichment (SELEX), an iterative technology for generating cost-effective aptamers with low dissociation constants (K d) for monitoring the form and structure of bioactive proteins and peptides. The review also presents case studies of this technique in monitoring the structural stability of bioactive peptide formulations to encourage applications in functional foods. The challenges and potential of aptamers in this research field are also discussed. Graphical abstract Advancing bioactive proteins and peptide functionality via aptameric ligands.


Assuntos
Aptâmeros de Nucleotídeos/química , Proteínas Alimentares/química , Análise de Alimentos/métodos , Alimento Funcional/análise , Peptídeos/química , Técnica de Seleção de Aptâmeros/métodos , Animais , Humanos , Modelos Moleculares , Conformação Proteica , Estabilidade Proteica
16.
Crit Rev Anal Chem ; 46(6): 521-37, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26980177

RESUMO

The quest to improve the detection of biomolecules and cells in health and life sciences has led to the discovery and characterization of various affinity bioprobes. Libraries of synthetic oligonucleotides (ssDNA/ssRNA) with randomized sequences are employed during Systematic Evolution of Ligands by Exponential Enrichment (SELEX) to select highly specific affinity probes called aptamers. With much focus on the generation of aptamers for a variety of target molecules, conventional SELEX protocols have been modified to develop new and improved SELEX protocols yielding highly specific and stable aptamers. Various techniques have been used to analyze the binding interactions between aptamers and their cognate molecules with associated merits and limitations. This article comprehensively reviews research advancements in the generation of aptamers, analyses physicochemical conditions affecting their binding characteristics to cellular and biomolecular targets, and discusses various field applications of aptameric binding. Biophysical techniques employed in the characterization of the molecular and binding features of aptamers to their cognate targets are also discussed.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros/métodos , Sítios de Ligação , Ligantes
17.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1015-1016: 121-134, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26919447

RESUMO

Biomedical research advances over the past two decades in bioseparation science and engineering have led to the development of new adsorbent systems called monoliths, mostly as stationary supports for liquid chromatography (LC) applications. They are acknowledged to offer better mass transfer hydrodynamics than their particulate counterparts. Also, their architectural and morphological traits can be tailored in situ to meet the hydrodynamic size of molecules which include proteins, pDNA, cells and viral targets. This has enabled their development for a plethora of enhanced bioscreening applications including biosensing, biomolecular purification, concentration and separation, achieved through the introduction of specific functional moieties or ligands (such as triethylamine, N,N-dimethyl-N-dodecylamine, antibodies, enzymes and aptamers) into the molecular architecture of monoliths. Notwithstanding, the application of monoliths presents major material and bioprocess challenges. The relationship between in-process polymerisation characteristics and the physicochemical properties of monolith is critical to optimise chromatographic performance. There is also a need to develop theoretical models for non-invasive analyses and predictions. This review article therefore discusses in-process analytical conditions, functionalisation chemistries and ligands relevant to establish the characteristics of monoliths in order to facilitate a wide range of enhanced bioscreening applications. It gives emphasis to the development of functional polymethacrylate monoliths for microfluidic and preparative scale bio-applications.


Assuntos
Cromatografia Líquida , Polímeros , Anticorpos/isolamento & purificação , Separação Celular , Cromatografia Líquida/instrumentação , Cromatografia Líquida/métodos , Cromatografia Líquida/tendências , Humanos , Proteínas/isolamento & purificação , Vírus/isolamento & purificação
18.
Crit Rev Biotechnol ; 36(6): 1010-1022, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26381238

RESUMO

The genome of virulent strains may possess the ability to mutate by means of antigenic shift and/or antigenic drift as well as being resistant to antibiotics with time. The outbreak and spread of these virulent diseases including avian influenza (H1N1), severe acute respiratory syndrome (SARS-Corona virus), cholera (Vibrio cholera), tuberculosis (Mycobacterium tuberculosis), Ebola hemorrhagic fever (Ebola Virus) and AIDS (HIV-1) necessitate urgent attention to develop diagnostic protocols and assays for rapid detection and screening. Rapid and accurate detection of first cases with certainty will contribute significantly in preventing disease transmission and escalation to pandemic levels. As a result, there is a need to develop technologies that can meet the heavy demand of an all-embedded, inexpensive, specific and fast biosensing for the detection and screening of pathogens in active or latent forms to offer quick diagnosis and early treatments in order to avoid disease aggravation and unnecessary late treatment costs. Nucleic acid aptamers are short, single-stranded RNA or DNA sequences that can selectively bind to specific cellular and biomolecular targets. Aptamers, as new-age bioaffinity probes, have the necessary biophysical characteristics for improved pathogen detection. This article seeks to review global pandemic situations in relation to advances in pathogen detection systems. It particularly discusses aptameric biosensing and establishes application opportunities for effective pandemic monitoring. Insights into the application of continuous polymeric supports as the synthetic base for aptamer coupling to provide the needed convective mass transport for rapid screening is also presented.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Pandemias , Bactérias/genética , Humanos , Vírus/genética
19.
Anal Chim Acta ; 888: 10-8, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26320953

RESUMO

The discovery of Systematic Evolution of Ligands by Exponential Enrichment (SELEX) assay has led to the generation of aptamers from libraries of nucleic acids. Concomitantly, aptamer-target recognition and its potential biomedical applications have become a major research endeavour. Aptamers possess unique properties that make them superior biological receptors to antibodies with a plethora of target molecules. Some specific areas of opportunities explored for aptamer-target interactions include biochemical analysis, cell signalling and targeting, biomolecular purification processes, pathogen detection and, clinical diagnosis and therapy. Most of these potential applications rely on the effective immobilisation of aptamers on support systems to probe target species. Hence, recent research focus is geared towards immobilising aptamers as oligosorbents for biodetection and bioscreening. This article seeks to review advances in immobilised aptameric binding with associated successful milestones and respective limitations. A proposal for high throughput bioscreening using continuous polymeric adsorbents is also presented.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Animais , Sítios de Ligação , Técnicas Biossensoriais/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Modelos Moleculares , Técnica de Seleção de Aptâmeros/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA