Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(5): 109665, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38646167

RESUMO

Glucagon is secreted by pancreatic α-cells to counteract hypoglycaemia. How glucose regulates glucagon secretion remains unclear. Here, using mouse islets, we studied the role of transmembrane and endoplasmic reticulum (ER) Ca2+ on intrinsic α-cell glucagon secretion. Blocking isradipine-sensitive L-type voltage-gated Ca2+ (Cav) channels abolished α-cell electrical activity but had little impact on its cytosolic Ca2+ oscillations or low-glucose-stimulated glucagon secretion. In contrast, depleting ER Ca2+ with cyclopiazonic acid or blocking ER Ca2+-releasing ryanodine receptors abolished α-cell glucose sensitivity and low-glucose-stimulated glucagon secretion. ER Ca2+ mobilization in α-cells is regulated by intracellular ATP and likely to be coupled to Ca2+ influx through P/Q-type Cav channels. ω-Agatoxin IVA blocked α-cell ER Ca2+ release and cell exocytosis, but had no additive effect on glucagon secretion when combined with ryanodine. We conclude that glucose regulates glucagon secretion through the control of ER Ca2+ mobilization, a mechanism that can be independent of α-cell electrical activity.

2.
Diabetologia ; 67(3): 528-546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38127123

RESUMO

AIMS/HYPOTHESIS: Diabetes mellitus is associated with impaired insulin secretion, often aggravated by oversecretion of glucagon. Therapeutic interventions should ideally correct both defects. Glucagon-like peptide 1 (GLP-1) has this capability but exactly how it exerts its glucagonostatic effect remains obscure. Following its release GLP-1 is rapidly degraded from GLP-1(7-36) to GLP-1(9-36). We hypothesised that the metabolite GLP-1(9-36) (previously believed to be biologically inactive) exerts a direct inhibitory effect on glucagon secretion and that this mechanism becomes impaired in diabetes. METHODS: We used a combination of glucagon secretion measurements in mouse and human islets (including islets from donors with type 2 diabetes), total internal reflection fluorescence microscopy imaging of secretory granule dynamics, recordings of cytoplasmic Ca2+ and measurements of protein kinase A activity, immunocytochemistry, in vivo physiology and GTP-binding protein dissociation studies to explore how GLP-1 exerts its inhibitory effect on glucagon secretion and the role of the metabolite GLP-1(9-36). RESULTS: GLP-1(7-36) inhibited glucagon secretion in isolated islets with an IC50 of 2.5 pmol/l. The effect was particularly strong at low glucose concentrations. The degradation product GLP-1(9-36) shared this capacity. GLP-1(9-36) retained its glucagonostatic effects after genetic/pharmacological inactivation of the GLP-1 receptor. GLP-1(9-36) also potently inhibited glucagon secretion evoked by ß-adrenergic stimulation, amino acids and membrane depolarisation. In islet alpha cells, GLP-1(9-36) led to inhibition of Ca2+ entry via voltage-gated Ca2+ channels sensitive to ω-agatoxin, with consequential pertussis-toxin-sensitive depletion of the docked pool of secretory granules, effects that were prevented by the glucagon receptor antagonists REMD2.59 and L-168049. The capacity of GLP-1(9-36) to inhibit glucagon secretion and reduce the number of docked granules was lost in alpha cells from human donors with type 2 diabetes. In vivo, high exogenous concentrations of GLP-1(9-36) (>100 pmol/l) resulted in a small (30%) lowering of circulating glucagon during insulin-induced hypoglycaemia. This effect was abolished by REMD2.59, which promptly increased circulating glucagon by >225% (adjusted for the change in plasma glucose) without affecting pancreatic glucagon content. CONCLUSIONS/INTERPRETATION: We conclude that the GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of glucagon secretion. We propose that the increase in circulating glucagon observed following genetic/pharmacological inactivation of glucagon signalling in mice and in people with type 2 diabetes reflects the removal of GLP-1(9-36)'s glucagonostatic action.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Ilhotas Pancreáticas , Fragmentos de Peptídeos , Humanos , Glucagon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Ilhotas Pancreáticas/metabolismo , Hipoglicemia/metabolismo , Insulina/metabolismo
3.
J Endocrinol ; 258(2)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37159865

RESUMO

Glucagon is the principal glucose-elevating hormone that forms the first-line defence against hypoglycaemia. Along with insulin, glucagon also plays a key role in maintaining systemic glucose homeostasis. The cells that secrete glucagon, pancreatic α-cells, are electrically excitable cells and use electrical activity to couple its hormone secretion to changes in ambient glucose levels. Exactly how glucose regulates α-cells has been a topic of debate for decades but it is clear that electrical signals generated by the cells play an important role in glucagon secretory response. Decades of studies have already revealed the key players involved in the generation of these electrical signals and possible mechanisms controlling them to tune glucagon release. This has offered the opportunity to fully understand the enigmatic α-cell physiology. In this review, we describe the current knowledge on cellular electrophysiology and factors regulating excitability, glucose sensing, and glucagon secretion. We also discuss α-cell pathophysiology and the perspective of addressing glucagon secretory defects in diabetes for developing better diabetes treatment, which bears the hope of eliminating hypoglycaemia as a clinical problem in diabetes care.


Assuntos
Diabetes Mellitus , Células Secretoras de Glucagon , Hipoglicemia , Humanos , Glucagon , Insulina , Glucose , Fenômenos Fisiológicos Celulares , Eletrofisiologia
4.
Sci Rep ; 12(1): 19321, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369239

RESUMO

The impact of ischaemia can severely damage procured donor organs for transplantation. The pancreas, and pancreatic islets in particular, is one of the most sensitive tissues towards hypoxia. The present study was aimed to assess the effect of hypoxic preconditioning (HP) performed ex-vivo in islets isolated from heart-beating donor (HBD) and non heart-beating donor (NHBD) rats. After HP purified islets were cultured for 24 h in hypoxia followed by islet characterisation. Post-culture islet yields were significantly lower in sham-treated NHBD than in HBD. This difference was reduced when NHBD islets were preconditioned. Similar results were observed regarding viability, apoptosis and in vitro function. Reactive oxygen species generation after hypoxic culture was significantly enhanced in sham-treated NHBD than in HBD islets. Again, this difference could be diminished through HP. qRT-PCR revealed that HP decreases pro-apoptotic genes but increases HIF-1 and VEGF. However, the extent of reduction and augmentation was always substantially higher in preconditioned NHBD than in HBD islets. Our findings indicate a lower benefit of HBD islets from HP than NHBD islets. The ischaemic preconditioning paradox suggests that HP should be primarily applied to islets from marginal donors. This observation needs evaluation in human islets.


Assuntos
Precondicionamento Isquêmico , Ilhotas Pancreáticas , Animais , Humanos , Ratos , Hipóxia , Doadores de Tecidos
5.
Diabet Med ; 39(12): e14984, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36264270

RESUMO

BACKGROUND: Tetraspanin-7 (Tspan7) is an islet autoantigen involved in autoimmune type 1 diabetes and known to regulate ß-cell L-type Ca2+ channel activity. However, the role of Tspan7 in pancreatic ß-cell function is not yet fully understood. METHODS: Histological analyses were conducted using immunostaining. Whole-body metabolism was tested using glucose tolerance test. Islet hormone secretion was quantified using static batch incubation or dynamic perifusion. ß-cell transmembrane currents, electrical activity and exocytosis were measured using whole-cell patch-clamping and capacitance measurements. Gene expression was studied using mRNA-sequencing and quantitative PCR. RESULTS: Tspan7 is expressed in insulin-containing granules of pancreatic ß-cells and glucagon-producing α-cells. Tspan7 knockout mice (Tspan7y/- mouse) exhibit reduced body weight and ad libitum plasma glucose but normal glucose tolerance. Tspan7y/- islets have normal insulin content and glucose- or tolbutamide-stimulated insulin secretion. Depolarisation-triggered Ca2+ current was enhanced in Tspan7y/- ß-cells, but ß-cell electrical activity and depolarisation-evoked exocytosis were unchanged suggesting that exocytosis was less sensitive to Ca2+ . TSPAN7 knockdown (KD) in human pseudo-islets led to a significant reduction in insulin secretion stimulated by 20 mM K+ . Transcriptomic analyses show that TSPAN7 KD in human pseudo-islets correlated with changes in genes involved in hormone secretion, apoptosis and ER stress. Consistent with rodent ß-cells, exocytotic Ca2+ sensitivity was reduced in a human ß-cell line (EndoC-ßH1) following Tspan7 KD. CONCLUSION: Tspan7 is involved in the regulation of Ca2+ -dependent exocytosis in ß-cells. Its function is more significant in human ß-cells than their rodent counterparts.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Humanos , Camundongos , Exocitose/fisiologia , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo
6.
Chronic Dis Transl Med ; 8(1): 7-18, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35620162

RESUMO

Glucagon is a potent glucose-elevating hormone that is secreted by pancreatic α-cells. While well-controlled glucagon secretion plays an important role in maintaining systemic glucose homeostasis and preventing hypoglycaemia, it is increasingly apparent that defects in the regulation of glucagon secretion contribute to impaired counter-regulation and hyperglycaemia in diabetes. It has therefore been proposed that pharmacological interventions targeting glucagon secretion/signalling can have great potential in improving glycaemic control of patients with diabetes. However, despite decades of research, a consensus on the precise mechanisms of glucose regulation of glucagon secretion is yet to be reached. Second messengers are a group of small intracellular molecules that relay extracellular signals to the intracellular signalling cascade, modulating cellular functions. There is a growing body of evidence that second messengers, such as cAMP and Ca2+, play critical roles in α-cell glucose-sensing and glucagon secretion. In this review, we discuss the impact of second messengers on α-cell electrical activity, intracellular Ca2+ dynamics and cell exocytosis. We highlight the possibility that the interaction between different second messengers may play a key role in the glucose-regulation of glucagon secretion.

7.
Acta Biomater ; 137: 92-102, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653695

RESUMO

Enzymatic digestion of the pancreas during islet isolation is associated with disintegration of the islet basement membrane (IBM) that can cause reduction of functional and morphological islet integrity. Attempts to re-establish IBM by coating the surface of culture vessels with various IBM proteins (IBMP) have resulted in loss of islet phenotype and function. This study investigated the capability of Collagen-IV, Laminin-521 and Nidogen-1, utilised as single or combined media supplements, to protect human islets cultured in hypoxia. When individually supplemented to media, all IBMP significantly improved islet survival and in-vitro function, finally resulting in as much as a two-fold increase of islet overall survival. In contrast, combining IBMP enhanced the production of chemokines and reactive oxygen species diminishing all positive effects of individually added IBMP. This impact was concentration-dependent and concerned nearly all parameters of islet integrity. Predictive extrapolation of these findings to data from 116 processed human pancreases suggests that more than 90% of suboptimal pancreases could be rescued for clinical islet transplantation increasing the number of transplantable preparations from actual 25 to 40 when adding Nidogen-1 to pretransplant culture. This study suggests that media supplementation with essential IBMP protects human islets from hypoxia. Amongst those, certain IBMP may be incompatible when combined or applied at higher concentrations. STATEMENT OF SIGNIFICANCE: Pancreatic islet transplantation is a minimally-invasive treatment that can reverse type 1 diabetes in certain patients. It involves infusing of insulin-producing cell-clusters (islets) from donor pancreases. Unfortunately, islet extraction is associated with damage of the islet basement membrane (IBM) causing reduced islet function and cell death. Attempts to re-establish the IBM by coating the surface of culture vessels with IBM proteins (IBMP) have been unsuccessful. Instead, we dissolved the most relevant IBM components Collagen-IV, Laminin-521 and Nidogen-1 in media routinely used for clinical islet culture and transplantation. We found human islet survival and function was substantially improved by IBMP, particularly Nidogen-1, when exposed to a hypoxic environment as found in vivo. We also investigated IBMP combinations. Our present findings have important clinical implications.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Membrana Basal , Humanos , Hipóxia , Inflamação , Insulina , Proteínas de Membrana
8.
J Inflamm Res ; 14: 599-610, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679137

RESUMO

BACKGROUND: Most islet transplant groups worldwide routinely use the TNFα inhibitor Etanercept in their peri-transplant protocols. Surprisingly, there have been no published dose-response studies on the effects of Etanercept on human islets. Our study aimed to address this by treating cultured human islets with increasing concentrations of Etanercept. MATERIALS AND METHODS: Isolated human islets were cultured for 3-4 days in normoxic (21% oxygen) or in hypoxic (2% oxygen) atmosphere using Etanercept dissolved in a range of 2.5-40 µg/mL prior to islet characterisation. RESULTS: In normoxic atmosphere, it was found that 5 µg/mL is the most efficient dose to preserve islet morphological and functional integrity during culture. Increasing the dose to 10 µg/mL or more resulted in detrimental effects with respect to viability and glucose-stimulated insulin release. When human islets were cultured for 3 to 4 days in clinically relevant hypoxia and treated with 5 µg/mL Etanercept, post-culture islet survival (P < 0.001) and in vitro function (P < 0.01) were significantly improved. This correlated with a substantially reduced cytokine production (P < 0.05), improved mitochondrial function (P < 0.01), and reduced production of reactive oxygen species (P < 0.001) in hypoxia-exposed islets. CONCLUSION: These findings suggest that the therapeutic window of Etanercept is very narrow and that this should be considered when optimising the dosage and route of Etanercept administration in islet-transplant recipients or when designing novel drug-delivering islet scaffolds.

9.
Cell Transplant ; 29: 963689720952332, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33150790

RESUMO

Previous studies in rodents have indicated that function and survival of transplanted islets can be substantially improved by mesenchymal stem cells (MSC). The few human islet studies to date have confirmed these findings but have not determined whether physical contact between MSC and islets is required or whether the benefit to islets results from MSC-secreted proteins. This study aimed to investigate the protective capacity of MSC-preconditioned media for human islets. MSC were cultured for 2 or 5 days in normoxia or hypoxia before harvesting the cell-depleted media for human islet culture in normoxia or hypoxia for 6-8 or 3-4 days, respectively. To characterize MSC-preconditioned media, proteomic secretome profiling was performed to identify angiogenesis- and inflammation-related proteins. A protective effect of MSC-preconditioned media on survival and in vitro function of hypoxic human islets was observed irrespective of the atmosphere used for MSC preconditioning. Islet morphology changed markedly when media from hypoxic MSC were used for culture. However, PDX-1 and insulin gene expression did not confirm a change in the genetic phenotype of these islets. Proteomic profiling of preconditioned media revealed the heterogenicity of the secretome comprising angiogenic and antiapoptotic as well as angiostatic or proinflammatory mediators released at an identical pattern regardless whether MSC had been cultured in normoxic or hypoxic atmosphere. These findings do not allow a clear discrimination between normoxia and hypoxia as stimulus for protective MSC capabilities but indicate an ambivalent character of the MSC angiogenesis- and inflammation-related secretome. Nevertheless, culture of human islets in acellular MSC-preconditioned media resulted in improved morphological and functional islet integrity suggesting a disbalance in favor of protective factors. Further approaches should aim to eliminate potentially detrimental factors to enable the production of advanced clinical grade islet culture media with higher protective qualities.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Ilhotas Pancreáticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteoma/metabolismo , Proteômica , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Humanos , Hipóxia/patologia , Imunofenotipagem , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/patologia
10.
Cell Transplant ; 25(8): 1539-46, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26628048

RESUMO

Hypoxia is the main threat to morphological and functional integrity of isolated pancreatic islets. Lack of oxygen seems to be of particular importance for functionality of encapsulated islets. The present study was initiated as an experimental model for the environment experienced by human islets in a confined space present during culture, shipment, and in an implanted macrodevice. Quadruplicate aliquots of isolated human islets (n = 12) were cultured for 24 h at 37°C under normoxic conditions using 24-well plates equipped with 8-µm pore size filter inserts and filled with islet aliquots adjusted to obtain a seeding density of 75, 150, 300, or 600 IEQ/cm(2). After culture viability, glucose-stimulated insulin release, DNA content as well as Bax and Bcl-2 gene expression were measured. Culture supernatants were collected to determine production of VEGF and MCP-1. Viability correlated inversely with IEQ seeding density (r = -0.71, p < 0.001), while the correlation of VEGF and MCP-1 secretion with seeding density was positive (r = 0.78, p < 0.001; r = 0.54, p < 0.001). Decreased viability corresponded with a significant increase in the Bax/Bcl-2 mRNA ratio at 300 and 600 IEQ/cm(2) and with a sigificantly reduced glucose-stimulated insulin secretion and insulin content compared to 75 or 150 IEQ/cm(2) (p < 0.01). The present study demonstrates that the seeding density is inversely correlated with islet viability and in vitro function. This is associated with a significant increase in VEGF and MCP-1 release suggesting a hypoxic and proinflammatory islet microenvironment.


Assuntos
Hipóxia/fisiopatologia , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/patologia , Adulto , Quimiocina CCL2/metabolismo , Feminino , Humanos , Hipóxia/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Ilhotas Pancreáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA