Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38843533

RESUMO

The spontaneous orientation polarization (SOP) of a permanent dipole moment of the molecule induces a giant surface potential (GSP) in an organic semiconductor film, and GSP is expected to be a crucial parameter for understanding the operational mechanism of organic light-emitting diodes (OLEDs). This study demonstrates that the voltage-dependent migration of a carrier recombination zone induced by a polar electron transporting layer (ETL) having a positive SOP causes a decline in the overall performance of the OLED in triplet-triplet upconversion (TTU) based on OLEDs. Specifically, the TTU efficiency in an OLED with 2,2',2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) as the ETL decreased by 20% due to the reduction of electrically generated triplet exciton density. This decrease resulted in a lower external electroluminescence (EL) quantum efficiency (EQE) of 5.4% at 1 mA cm-2, while the OLED with a nonpolar ETL resulted in an EQE of around 8.1% at 1 mA cm-2. We confirmed a shift in the recombination zone from the current density dependence of the EL spectra in the OLEDs. Our results indicate that the fixed carrier recombination zone near a hole transport layer and an emitting layer (HTL/EML) strongly enhanced the TTU process, while the polar EML/ETL interface induced the migration of the recombination zone depending on voltage, resulting in the decrease of triplet exciton density.

2.
Adv Mater ; : e2402275, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865445

RESUMO

Hexacarbazolylbenzene (6CzPh), which is benzene substituted by six carbazole rings, is a simple and attractive compound. Despite the success of a wide variety of carbazole derivatives in organic light-emitting diodes (OLEDs), 6CzPh has not received attention so far. Here, we reveal excellent performances of 6CzPh as a host material in OLEDs regarding conventional host materials. Various strategies have been implemented to improve the performance of OLEDs, e.g., triplet utilization by thermally activated delayed fluorescence (TADF) and phosphorescence emitters for maximizing internal quantum efficiency, and molecular orientation control for increasing outcoupling efficiency. The present host material is suited for both criteria. Robustness of the structure and sufficiently high triplet energy enables a high external quantum efficiency with a long device lifetime. Besides, the host material boosts the horizontal molecular orientations of several guest emitters. It is noteworthy that disk-shaped 4CzIPN marks the complete horizontal molecular orientations (Θh = 100%, S = -0.50). These results provide an effective way of improving efficiencies without sacrificing device durability for future OLEDs. This article is protected by copyright. All rights reserved.

3.
Science ; 384(6697): eadk9227, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38753786

RESUMO

Contemporary materials discovery requires intricate sequences of synthesis, formulation, and characterization that often span multiple locations with specialized expertise or instrumentation. To accelerate these workflows, we present a cloud-based strategy that enabled delocalized and asynchronous design-make-test-analyze cycles. We showcased this approach through the exploration of molecular gain materials for organic solid-state lasers as a frontier application in molecular optoelectronics. Distributed robotic synthesis and in-line property characterization, orchestrated by a cloud-based artificial intelligence experiment planner, resulted in the discovery of 21 new state-of-the-art materials. Gram-scale synthesis ultimately allowed for the verification of best-in-class stimulated emission in a thin-film device. Demonstrating the asynchronous integration of five laboratories across the globe, this workflow provides a blueprint for delocalizing-and democratizing-scientific discovery.

4.
Nat Commun ; 15(1): 4394, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782957

RESUMO

Manipulating dynamic behaviours of charge carriers and excitons in organic light-emitting diodes (OLEDs) is essential to simultaneously achieve high colour purity and superior operational lifetime. In this work, a comprehensive transient electroluminescence investigation reveals that incorporating a thermally activated delayed fluorescence assistant molecule with a deep lowest unoccupied molecular orbital into a bipolar host matrix effectively traps the injected electrons. Meanwhile, the behaviours of hole injection and transport are still dominantly governed by host molecules. Thus, the recombination zone notably shifts toward the interface between the emissive layer (EML) and the electron-transporting layer (ETL). To mitigate the interfacial carrier accumulation and exciton quenching, this bipolar host matrix could serve as a non-barrier functional spacer between EML/ETL, enabling the distribution of recombination zone away from this interface. Consequently, the optimized OLED exhibits a low driving voltage, promising device stability (95% of the initial luminance of 1000 cd m-2, LT95 > 430 h), and a high Commission Internationale de L'Éclairage y coordinate of 0.69. This indicates that managing the excitons through rational energy level alignment holds the potential for simultaneously satisfying Rec.2020 standard and achieving commercial-level stability.

5.
Adv Mater ; : e2402289, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581139

RESUMO

Narrowband emissive multiresonant thermally activated delayed fluorescence (MR-TADF) emitters are a promising solution to achieve the current industry-targeted color standard, Rec. BT.2020-2, for blue color without using optical filters, aiming for high-efficiency organic light-emitting diodes (OLEDs). However, their long triplet lifetimes, largely affected by their slow reverse intersystem crossing rates, adversely affect device stability. In this study, a helical MR-TADF emitter (f-DOABNA) is designed and synthesized. Owing to its π-delocalized structure, f-DOABNA possesses a small singlet-triplet gap, ΔEST, and displays simultaneously an exceptionally faster reverse intersystem crossing rate constant, kRISC, of up to 2 × 106 s-1 and a very high photoluminescence quantum yield, ΦPL, of over 90% in both solution and doped films. The OLED with f-DOABNA as the emitter achieved a narrow deep-blue emission at 445 nm (full width at half-maximum of 24 nm) associated with Commission Internationale de l'Éclairage (CIE) coordinates of (0.150, 0.041), and showed a high maximum external quantum efficiency, EQEmax, of ≈20%.

6.
Nat Commun ; 15(1): 3174, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609364

RESUMO

To fulfill ultra-high-definition display, efficient and bright green organic light-emitting diodes with Commission Internationale de l'Éclairage y-coordinate ≥ 0.7 are required. Although there are some preceding reports of highly efficient devices based on pure-green multi-resonance emitters, the efficiency rolloff and device stabilities for those pure-green devices are still unsatisfactory. Herein, we report the rational design of two pure-green multi-resonance emitters for achieving highly stable and efficient pure-green devices with CIEx,ys that are close to the NTSC and BT. 2020 standards. In this study, our thermally activated delayed fluorescence OLEDs based on two pure-green multi-resonance emitters result in CIEy up to 0.74. In hyperfluorescent device architecture, the CIExs further meet the x-coordinate requirements, i.e., NTSC (0.21) and BT. 2020 (0.17), while keeping their CIEys ~ 0.7. Most importantly, hyperfluorescent devices display the high maximum external quantum efficiencies of over 25% and maximum luminance of over 105 cd m-2 with suppressed rolloffs (external quantum efficiency of ~20% at 104 cd m-2) and long device stabilities with LT95s of ~ 600 h.

7.
Nat Commun ; 15(1): 2267, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480706

RESUMO

Despite significant progress made over the past decade in thermally activated delayed fluorescence (TADF) molecules as a material paradigm for enhancing the performance of organic light-emitting diodes, the underlying spin-flip mechanism in these charge-transfer (CT)-type molecular systems remains an enigma, even since its initial report in 2012. While the initial and final electronic states involved in spin-flip between the lowest singlet and lowest triplet excited states are well understood, the exact dynamic processes and the role of intermediate high-lying triplet (T) states are still not fully comprehended. In this context, we propose a comprehensive model to describe the spin-flip processes applicable for a typical CT-type molecule, revealing the origin of the high-lying T state in a partial molecular framework in CT-type molecules. This work provides experimental and theoretical insights into the understanding of intersystem crossing for CT-type molecules, facilitating more precise control over spin-flip rates and thus advancing toward developing the next-generation platform for purely organic luminescent candidates.

8.
Nat Commun ; 15(1): 731, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272899

RESUMO

Organic light-emitting diodes (OLEDs) exploiting simple binary emissive layers (EMLs) blending only emitters and hosts have natural advantages in low-cost commercialization. However, previously reported OLEDs based on binary EMLs hardly simultaneously achieved desired comprehensive performances, e.g., high efficiency, low efficiency roll-off, narrow emission bands, and high operation stability. Here, we report a molecular-design strategy. Such a strategy leads to a fast reverse intersystem crossing rate in our designed emitter h-BNCO-1 of 1.79×105 s-1. An OLED exploiting a binary EML with h-BNCO-1 achieves ultrapure emission, a maximum external quantum efficiency of over 40% and a mild roll-off of 14% at 1000 cd·m-2. Moreover, h-BNCO-1 also exhibits promising operational stability in an alternative OLED exploiting a compact binary EML (the lifetime reaching 95% of the initial luminance at 1000 cd m-2 is ~ 137 h). Here, our work has thus provided a molecular-design strategy for OLEDs with promising comprehensive performance.

9.
Sci Adv ; 10(1): eadj6583, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181084

RESUMO

Organic light-emitting diodes (OLEDs) that efficiently emit near-infrared (NIR) light and consume little power will create valuable applications for OLEDs beyond just displays. Here, we report such a NIR-OLED with high operational stability that can be used as a light source for three-dimensional sensing of object's surfaces. Using a narrow-energy-gap material as a host for producing NIR hyperfluorescence system, we fabricated a NIR-OLED exhibiting intense emission at 930 nm with a high external electroluminescence quantum efficiency of more than 1% at a current density of 100 milliamperes per square meter without any degradation even after more than 300 hours of operation. The NIR-OLEDs were integrated with dense complementary metal-oxide semiconductor circuits to make a micro-NIR-OLED projector (0.21 inch, 230,400 pixels). By actively driving the projector on a pixel by pixel and projecting their emission onto objects, we successfully scanned and sensed the surfaces in three dimensions with invisible NIR.

10.
Chem Commun (Camb) ; 60(13): 1758-1761, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38251830

RESUMO

Herein, we report the first example of chiral donor-acceptor cage DA-2 displaying efficient circularly polarized thermally activated delayed fluorescence (CP-TADF) with |glum| values up to 2.1 × 10-3 and PLQY of 32%. A small ΔEST of 0.051 eV and quasi-parallel (θ = 6°) transition electric and magnetic dipole moments were realized from the through-space charge transfer interaction between the parallelly aligned donor and acceptor in DA-2. This D-A cage configuration has provided a novel design strategy for discovering potential efficient CP-TADF emitters.

11.
Angew Chem Int Ed Engl ; 63(2): e202315210, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37991245

RESUMO

The investigation of organic light-emitting diodes (OLEDs) and organic laser devices with thermally activated delayed fluorescence (TADF) molecules is emerging due to the potential of harnessing triplets. In this work, a boron/nitrogen multiple-resonance TADF polycyclic framework fusing carbazole units (CzBNPh) was proposed. CzBNPh exhibited a narrowband emission (<30 nm), a unity photoluminescence quantum yield, and a fast radiative rate. Consequently, CzBNPh demonstrated a low distributed feedback (DFB) lasing threshold of 0.68 µJ cm-2 . Furthermore, the stimulated emission zone of CzBNPh was effectively separated from its singlet and triplet absorption, thereby minimizing the singlet-triplet annihilation under long-pulsed excitation ranging from 20 µs to 2.5 ms. Significantly, the enhanced rigid molecular conformation, thermal stability, and photo-stability resulted in improved lasing and electroluminescence stability compared to that of 5,9-diphenyl-5,9-diaza-13b-boranaphtho[3,2,1-de]anthracene (DABNA)-core. These findings indicate the potential of CzBN-core as a promising framework for achieving long-pulsed wave and electrically-pumped lasing in the future.

12.
Faraday Discuss ; 250(0): 233-250, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38031437

RESUMO

In recent years, much attention has been paid to the development of thermally activated delayed fluorescence (TADF) materials with short delayed-fluorescence lifetimes to improve the device performances of OLEDs. In principle, by reducing the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) overlap, while the energy difference between S1-T1 (ΔEST) and activation energy (Ea) can be reduced, and the reverse intersystem crossing rate constant (kRISC) can be accelerated, a decrease in the radiative rate constant happens, necessitating an advanced molecular design. Furthermore, a molecule based on heptazine as a parent skeleton has recently been found to have a peculiar temperature dependence of luminescence decay, suggesting a negative gap (NG) material. In this report, we show that 9-[1,4]benzoxaborino[2,3,4-kl]phenoxaborine-7-yl-1,3,6,8-tetramethyl-9H-carbazole (TMCz-BO), a donor-acceptor linked TADF molecule with a very short delay lifetime of 750 ns, exhibits a peculiar thermal behavior similar to that of NG materials based on the temperature dependence of its luminescence decay in solution.

13.
Angew Chem Int Ed Engl ; 62(44): e202312326, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37726257

RESUMO

Photon-upconversion in organic molecular systems is one of the promising technologies for future energy harvesting systems because these systems can generate excitons that possess higher energy than excitation energy. The photon-upconversion caused by absorbing ambient heat as additional energy is particularly interesting because it could ideally provide a light-driving cooling system. However, only a few organic molecular systems have been reported. Here, we report the anti-Stokes photoluminescence (ASPL) derived from hot-band absorption in a series of multi-resonance-type thermally-activated delayed fluorescence (MR-TADF) molecules. The MR-TADF molecules exhibited an anti-Stokes shift of approximately 0.1 eV with a high PL quantum yield in the solution state. The anti-Stokes shift corresponded well to the 1-0 vibration transition from the ground state to the excited singlet state, and we further evaluated a correlation between the activation energy for the ASPL intensity and the TADF process. Our demonstration underlines that MR-TADF molecules have become a novel class of ASPL materials for various future applications, such as light-driving cooling systems.

14.
Chem Sci ; 14(25): 6867-6875, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37389253

RESUMO

Trivalent lanthanide complexes are attractive light emitters owing to their ideal high color purity. Sensitization using ligands with high absorption efficiency is a powerful approach to enhancing photoluminescence intensity. However, the development of antenna ligands that can be used for sensitization is limited due to difficulties in controlling the coordination structures of lanthanides. When compared to conventional luminescent Eu(iii) complexes, a system composed of triazine-based host molecules and Eu(hfa)3(TPPO)2 (hfa: hexafluoroacetylacetonato and TPPO: triphenylphosphine oxide) significantly increased total photoluminescence intensity. Energy transfer from the host molecules to the Eu(iii) ion occurs via triplet states over several molecules, according to time-resolved spectroscopic studies, with nearly 100% efficiency. Our discovery paves the way for efficient light harvesting of Eu(iii) complexes with simple fabrication using a solution process.

15.
J Phys Chem Lett ; 14(22): 5221-5225, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37260370

RESUMO

Reverse intersystem crossing (RISC) in purely organic molecules has become an attractive research topic since the demonstration of high efficiencies in organic light-emitting diodes using thermally activated delayed fluorescence (TADF). Although the intermolecular interactions have a significant impact on the exciton dynamics, it is generally difficult to identify the quantitative relationship associated with a specific factor. In this work, we used a clathrate crystal with TADF and H2O molecules to evaluate the effect of hydrogen bonding while maintaining molecular conformations and other intermolecular interactions. The hydrogen bonding shifted the charge transfer excited states to lower energies, resulting in superior TADF properties. Although the increase in the RISC rate is considered to enhance the stabilities of TADF molecules, photostability analysis revealed nearly the same degradation speed despite the 3 times faster RISC rate.

16.
Adv Mater ; : e2211873, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165602

RESUMO

A continuous-wave (CW) organic solid-state laser is highly desirable for spectroscopy, sensing, and communications, but is a significant challenge in optoelectronics. The accumulation of long-lived triplet excitons and relevant excited-state absorptions, as well as singlet-triplet annihilation, are the main obstacles to CW lasing. Here, progress in singlet- and triplet-state utilizations in organic gain media is reviewed to reveal the issues in working with triplets. Then, exciton behaviors that inhibit light oscillations during long excitation pulses are discussed. Further, recent advances in increasing organic lasing pulse widths from microseconds toward the indication of CW operation are summarized with respect to molecular designs, advanced resonator architectures, triplet scavenging, and potential triplet contribution strategies. Finally, future directions and perspectives are proposed for achieving stable CW organic lasers with significant triplet contribution.

17.
Sci Rep ; 13(1): 7644, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169821

RESUMO

A considerable variety of donor-acceptor (D-A) combinations offers the potential for realizing highly efficient thermally activated delayed fluorescence (TADF) materials. Multiple D-A type compounds are one of the promising families of TADF materials in terms of stability as well as efficiencies. However, those emitters are always composed of carbazole-based donors despite a wide choice of moieties used in linearly linked single D-A molecules. Herein, we developed a multiple D-A type TADF compound with two distinct donor units of 9,10-dihydro-9,9-dimethylacridine (DMAC) and carbazole as the hetero-donor design. The new emitter exhibits high photoluminescence quantum yield (PLQY) in various conditions including polar media blend and high concentrations. Organic light-emitting diodes (OLEDs) showed a reasonably high external quantum efficiency (EQE). In addition, we revealed that the multiple-D-A type molecules showed better photostability than the single D-A type molecules, while the operational stability in OLEDs involves dominant other factors.

18.
ACS Appl Mater Interfaces ; 15(19): 23557-23563, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37146232

RESUMO

In the process of triplet-triplet upconversion (TTU), a bright excited singlet can be generated because of the collision of two dark excited triplets. In particular, the efficiency of TTU is crucial for achieving a high exciton production yield in blue fluorescence organic light-emitting diodes (OLEDs) beyond the theoretical limit. While the theoretical upper limit of TTU contribution yield is expected to be 60%, blue OLEDs with the maximum TTU contribution are still scarce. Herein, we present a proof of concept for realizing the maximum TTU contribution yield in blue OLEDs, achieved through the doping of thermally activated delayed fluorescence (TADF) molecules in the carrier recombination zone. The bipolar carrier transport ability of TADF materials enables direct carrier recombination on the molecules, resulting in the expansion of the recombination zone. Although the external electroluminescence quantum efficiency of OLEDs is slightly lower than that of conventional TTU-OLEDs due to the low photoluminescence quantum yield of the doped layer, the TTU efficiency approaches the upper limit. Furthermore, the operational device lifetime of OLEDs employing TADF molecules increased by five times compared to the conventional ones, highlighting the expansion of the recombination zone as a crucial factor for enhancing overall OLED performance in TTU-OLEDs.

19.
Org Lett ; 25(17): 3040-3044, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087761

RESUMO

Pyrrolopyrrole aza-BODIPYs (PPABs), dimeric aza-BODIPY analogues, exhibit intense absorption and fluorescence in the visible and near-infrared (NIR) regions. Here, we developed a facile postmodification by palladium-catalyzed coupling reactions to synthesize a series of donor-acceptor-donor (D-A-D) PPABs. Despite the possible fluorescence quenching dictated by the energy-gap low, D-A-D PPABs exhibit high-fluorescence brightness in the NIR region, implying their potential use as a bright NIR emitter.

20.
J Phys Chem Lett ; 14(10): 2493-2500, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36867762

RESUMO

Continuous-wave (CW) lasing in quasi-two-dimensional (2D) perovskite-based distributed feedback cavities has been achieved at room temperature; however, CW microcavity lasers comprising distributed Bragg reflectors (DBRs) have rarely been prepared using solution-processed quasi-2D perovskite films because the roughness of perovskite films significantly increases intersurface scattering loss in the microcavity. Herein, high-quality spin-coated quasi-2D perovskite gain films were prepared using an antisolvent to reduce roughness. The highly reflective top DBR mirrors were deposited via room-temperature e-beam evaporation to protect the perovskite gain layer. Lasing emission of the prepared quasi-2D perovskite microcavity lasers under CW optical pumping was clearly observed at room temperature, featuring a low threshold of ∼1.4 W cm-2 and beam divergence of ∼3.5°. It was concluded that these lasers originated from weakly coupled excitons. These results elucidate the importance of controlling the roughness of quasi-2D films to achieve CW lasing, thus facilitating the design of electrically pumped perovskite microcavity lasers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA