RESUMO
Deoxynojirimycin (DNJ) is the archetypal iminosugar, in which the configuration of the hydroxyl groups in the piperidine ring truly mimic those of d-glucopyranose; DNJ and derivatives have beneficial effects as therapeutic agents, such as anti-diabetic and antiviral agents, and pharmacological chaperones for genetic disorders, because they have been shown to inhibit α-glucosidases from various sources. However, attempts to design a better molecule based solely on structural similarity cannot produce selectivity between α-glucosidases that are localized in multiple organs and tissues, because the differences of each sugar-recognition site are very subtle. In this study, we provide the first example of a design strategy for selective lysosomal acid α-glucosidase (GAA) inhibitors focusing on the alkyl chain storage site. Our design of α-1-C-heptyl-1,4-dideoxy-1,4-imino-l-arabinitol (LAB) produced a potent inhibitor of the GAA, with an IC50 value of 0.44 µM. It displayed a remarkable selectivity toward GAA (selectivity index value of 168.2). A molecular dynamic simulation study revealed that the ligand-binding conformation stability gradually improved with increasing length of the α-1-C-alkyl chain. It is noteworthy that α-1-C-heptyl-LAB formed clearly different interactions from DNJ and had favored hydrophobic interactions with Trp481, Phe525, and Met519 at the alkyl chain storage pocket of GAA. Moreover, a molecular docking study revealed that endoplasmic reticulum (ER) α-glucosidase II does not have enough space to accommodate these alkyl chains. Therefore, the design strategy focusing on the shape and acceptability of long alkyl chain at each α-glucosidase may lead to the creation of more selective and practically useful inhibitors.
Assuntos
Antivirais/química , Desenho de Fármacos , Inibidores de Glicosídeo Hidrolases/química , Imino Açúcares/química , Simulação de Acoplamento Molecular , alfa-Glucosidases/química , 1-Desoxinojirimicina/química , Glucosamina/análogos & derivados , Glucosamina/química , HumanosRESUMO
Aldose reductase (AR) inhibitors are used clinically to treat long-term diabetic complications. Previous studies reported a series of AR inhibitory candidates, but unfortunately the mode of inhibition was poorly described due mainly to the lack of readily available methods for evaluating the specificity. The present study examined the AR inhibitory effects of novel synthetic hydantoins and their structural relatives, some of which were obtained from chemically engineered extracts of natural plants, and discovered several novel AR inhibitors with moderate inhibitory activity. The identified inhibitors were then subjected to a two-step mechanistic characterization using a detergent-addition assay and our novel dimethyl sulfoxide (DMSO)-perturbation assay. The detergent-addition assay revealed aggregation-based inhibitors, and the subsequent DMSO-perturbation assay identified nonspecific binding inhibitors. Thus, the present study demonstrates the usefulness of the DMSO-perturbation screen for identifying nonspecific binding characteristics of AR inhibitors.
Assuntos
Aldeído Redutase/antagonistas & inibidores , Dimetil Sulfóxido/química , Humanos , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
In search for enzyme inhibitors, we often encounter "promiscuous" enzyme inhibitors exhibiting nonspecific binding property toward enzyme active site. Therefore, inhibitory candidates should be mechanistically characterized as early as possible in discovery processes. However, there remains a lack of highly reliable and readily available methodology to evaluate specificity of initial hits inhibitors. The present study developed and established a novel DMSO-perturbing assay to identify promiscuous enzyme inhibitors. The assay successfully identified nonspecific binding inhibitors with a broad scope, typically by the attenuation of inhibitory activity by the influence of DMSO-addition. This attenuation would be attributed to the nonspecific binding property of inhibitors toward both productive and nonproductive (nondenatured) states of enzymes in perturbation solution. This working hypothesis was supported by spectroscopic analyses of enzyme conformations and analyses of solvent effects on perturbation. Overall, these results provided a novel concept of the DMSO-perturbing assay.
RESUMO
The red maple and sugar maple (Acer rubrum and A. saccharum, respectively) contain acertannins (ginnalins and maplexins), galloylated derivatives of 1,5-anhydro-d-glucitol (1,5-AG, 1). These compounds have a variety of potential medicinal properties and we have shown that some of them promote the expression of ceramide synthase 3. We now report on the beneficial effects of ginnalin B, (6-O-galloyl-1,5-AG, 5), leading to acceleration of skin metabolism and reduction of the turnover time. Ginnalin B dose-dependently increased the relative amount of keratin 10, keratin 1, and filaggrin gene, with maximal increase of 1.7-, 2.9, and 5.2-fold at 100⯵M, respectively. The validation study showed that it had superior capacity to induce multiple stages of keratinocyte differentiation and significantly elevated the immunostaining site of keratin 10 and filaggrin in a 3-dimensional cultured human skin model, by 1.2 and 2.8-fold, respectively. Furthermore, ginnalin B caused the arrest of proliferation at the G0/G1 phase but it did not induce apoptotic cell death in normal human keratinocytes. Molecular studies revealed that ginnalin B up-regulated the levels of NOTCH1 and a concomitant increase p21 expression. Ginnalin B, therefore, represents a new class of promising functional and medical cosmetic compound and it could contribute to the maintenance of homeostasis of the epidermis.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Receptor Notch1/metabolismo , Pele/efeitos dos fármacos , Sorbitol/análogos & derivados , Antígenos de Diferenciação/metabolismo , Linhagem Celular , Proteínas Filagrinas , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Queratina-1/metabolismo , Queratina-10/metabolismo , Sorbitol/farmacologiaRESUMO
Some point mutations in ß-glucocerebrosidase cause either improper folding or instability of this protein, resulting in Gaucher disease. Pharmacological chaperones bind to the mutant enzyme and stabilize this enzyme; thus, pharmacological chaperone therapy was proposed as a potential treatment for Gaucher disease. The binding affinities of α-1-C-alkyl 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) derivatives, which act as pharmacological chaperones for ß-glucocerebrosidase, abruptly increased upon elongation of their alkyl chain. In this study, the primary causes of such an increase in binding affinity were analyzed using proteinâ»ligand docking and molecular dynamics simulations. We found that the activity cliff between α-1-C-heptyl-DAB and α-1-C-octyl-DAB was due to the shape and size of the hydrophobic binding site accommodating the alkyl chains, and that the interaction with this hydrophobic site controlled the binding affinity of the ligands well. Furthermore, based on the aromatic/hydrophobic properties of the binding site, a 7-(tetralin-2-yl)-heptyl-DAB compound was designed and synthesized. This compound had significantly enhanced activity. The design strategy in consideration of aromatic interactions in the hydrophobic pocket was useful for generating effective pharmacological chaperones for the treatment of Gaucher disease.
Assuntos
Doença de Gaucher/tratamento farmacológico , Glucosilceramidase/antagonistas & inibidores , Imino Açúcares/química , Álcoois Açúcares/química , Sítios de Ligação , Estabilidade Enzimática/efeitos dos fármacos , Glucosilceramidase/química , Humanos , Imino Açúcares/uso terapêutico , Ligantes , Chaperonas Moleculares/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Mutação Puntual , Ligação Proteica , Álcoois Açúcares/antagonistas & inibidores , Álcoois Açúcares/uso terapêuticoRESUMO
The affinity of a series of iminosugar-based inhibitors exhibiting various ring sizes toward Hex A and their essential interactions with the enzyme active site were investigated. All the Hex A-inhibiting iminosugars tested formed hydrogen bonds with Arg178, Asp322, Tyr421 and Glu462 and had the favorable cation-π interaction with Trp460. Among them, DMDP amide (6) proved to be the most potent competitive inhibitor with a Ki value of 0.041 µM. We analyzed the dynamic properties of both DMDP amide (6) and DNJNAc (1) in aqueous solution using molecular dynamics (MD) calculations; the distance of the interaction between Asp322 and 3-OH and Glu323 and 6-OH was important for stable interactions with Hex A, reducing fluctuations in the plasticity of the active site. DMDP amide (6) dose-dependently increased intracellular Hex A activity in the G269S mutant cells and restored Hex A activity up to approximately 43% of the wild type level; this effect clearly exceeded the border line treatment for Tay-Sachs disease, which is regarded as 10-15% of the wild type level. This is a significantly greater effect than that of pyrimethamine, which is currently in Phase 2 clinical trials. DMDP amide (6), therefore, represents a new promising pharmacological chaperone candidate for the treatment of Tay-Sachs disease.
Assuntos
Domínio Catalítico , Simulação por Computador , Hexosaminidase A/metabolismo , Açúcares/metabolismo , Açúcares/farmacologia , Doença de Tay-Sachs/tratamento farmacológico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Hexosaminidase A/antagonistas & inibidores , Hexosaminidase A/química , Hexosaminidase A/genética , Humanos , Simulação de Dinâmica Molecular , Mutação , Açúcares/química , Açúcares/uso terapêuticoRESUMO
A set of multivalent polyhydroxylated acetamidoazepanes based on ethylene glycol, glucoside, or cyclodextrin scaffolds was prepared. The compounds were assessed against plant, mammalian, and therapeutically relevant hexosaminidases. Multimerization was shown to improve the inhibitory potency with synergy, and to fine tune the selectivity profile between related hexosaminidases.
Assuntos
Antibacterianos/química , Azepinas/química , Hexosaminidases/antagonistas & inibidores , Imino Açúcares/química , Animais , Antibacterianos/farmacologia , Azepinas/farmacologia , Ciclodextrinas/química , Inibidores Enzimáticos/metabolismo , Etilenoglicol/química , Glucosídeos/química , Imino Açúcares/farmacologia , Plantas/metabolismoRESUMO
The present study discovered four novel hyaluronan-degrading enzyme (hyaluronidase) inhibitors including chikusetsusaponins and catechins through the activity-guided separation of Panax japonicus and Prunus salicina, respectively. Although the discovery resulted in identification of usual frequent hitters, subsequent mechanistic characterizations under our DMSO-perturbed assay conditions and related protocols revealed that chikusetusaponin IV would serve as an aggregating and non-specific binding inhibitor, while (-)-epicatechin would interact specifically with enzyme at the catalytic site or more likely at a kind of catechin-binding site with a relatively week inhibitory activity. The latter description might provide a possible explanation for the well-known fact that a series of catechin have been described as frequent hitters in biological assays with a moderate activity. Thus, the present study demonstrated a practical and robust methodology to characterize initial screening hits mechanistically molecule-by-molecule in the early stage of natural product-based drug discovery.
Assuntos
Dimetil Sulfóxido/química , Inibidores Enzimáticos/química , Hialuronoglucosaminidase/antagonistas & inibidores , Panax/química , Prunus domestica/química , Saponinas/química , Animais , Sítios de Ligação , Catequina/química , Bovinos , Descoberta de Drogas , Ensaios Enzimáticos , Inibidores Enzimáticos/isolamento & purificação , Ácido Glicirrízico/química , Hialuronoglucosaminidase/química , Masculino , Octoxinol/química , Extratos Vegetais/farmacologia , Saponinas/isolamento & purificaçãoRESUMO
This study shows that the cyclization of l-DMDP thioureas to bicyclic l-DMDP isothioureas improved α-l-rhamnosidase inhibition which was further enhanced by increasing the length of the alkyl chain. The addition of a long alkyl chain, such as decyl or dodecyl, to the nitrogen led to the production of highly potent inhibitors of α-l-rhamnosidase; it also caused broad inhibition spectrum against ß-glucosidase and ß-galactosidase. In contrast, the corresponding N-benzyl-l-DMDP cyclic isothioureas display selective inhibition of α-l-rhamnosidase; 3',4'-dichlorobenzyl-l-DMDP cyclic isothiourea (3r) was found to display the most potent and selective inhibition of α-l-rhamnosidase, with IC50 value of 0.22µM, about 46-fold better than the positive control 5-epi-deoxyrhamnojirimycin (5-epi-DRJ; IC50=10µM) and occupied the active-site of this enzyme (Ki=0.11µM). Bicyclic isothioureas of ido-l-DMDP did not inhibit α-l-rhamnosidase. These new mimics of l-rhamnose may affect other enzymes associated with the biochemistry of rhamnose including enzymes involved in progression of tuberculosis.
Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Pirrolidinas/química , Pirrolidinas/farmacologia , Tioureia/análogos & derivados , Tioureia/farmacologia , Animais , Ciclização , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Glicosídeo Hidrolases/metabolismo , Humanos , Penicillium/enzimologia , Pirrolidinas/síntese química , Tioureia/síntese químicaRESUMO
BACKGROUND: Taxanes are known to cause onychopathy. Previous studies have reported the relationship between onychopathy and paclitaxel dosing intervals and cumulative doses. However, there are no studies of the predictive factors for docetaxel-induced nail changes. The present study used the drug accumulation rate (mg/m2/day) as a novel indicator and evaluated its usefulness for the prediction of onychopathy. METHODS: From January 2008 to December 2009, we examined patients who received docetaxel at the Toyama University Hospital and Tonami General Hospital to determine the time to onset of onychopathy, the accumulation rate, and the cumulative dose. We then divided the study subjects into two groups, and used Receiver Operating Characteristic (ROC) analysis to calculate a cut-off value. We evaluated both indicators as predictive factors for onychopathy using the log-rank test and Cox proportional hazards model. RESULTS: Ninety-five patients were included in the present study. The results of the log-rank test sub-analysis revealed that the median number of days until onychopathy onset was significantly shorter in patients with an accumulation rate greater than the cut-off (P = 0.009), and in those with a cumulative dose below the cut-off (P < 0.001). The hazard ratios for the accumulation rate and cumulative dose, evaluated using Cox proportional hazards regression analysis, were 1.44 (P = 0.036) and 0.99 (P < 0.001), respectively. CONCLUSIONS: The results of the present study indicated that the drug accumulation rate influenced the time to onset of docetaxel-induced onychopathy. TRIAL REGISTRATION: This study is not applicable for trial registration due to retrospective chart review without intervention.
RESUMO
Hyaluronan-degrading enzyme (hyaluronidase) is involved in tumor growth and inflammation, and as such, hyaluronidase inhibitors have received recent attention as potential therapeutics. The previous studies have successfully discovered a wide range of inhibitors, but unfortunately most of them are dissimilar to original ligand hyaluronan and the mode of action is poorly understood. The present study mechanistically characterized these structurally unrelated inhibitors by interpreting the behavior of concentration-response curves under several in vitro assay conditions. Detergent-addition conditions definitely identified aggregation-based inhibitors. Subsequently, DMSO-perturbed conditions, though preliminary, highlighted the inhibitors that might bind to enzyme non-specifically. Here, an intriguing implication of the latter description is that DMSO-perturbed conditions would generate non-productive but not-denatured enzyme that is an assembly of effective species to capture non-specific binding molecules, and thereby would attenuate their inhibitory activities.
Assuntos
Dimetil Sulfóxido/química , Inibidores Enzimáticos/farmacologia , Hialuronoglucosaminidase/antagonistas & inibidores , Sulfatos de Condroitina/síntese química , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Cromolina Sódica/síntese química , Cromolina Sódica/química , Cromolina Sódica/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Flavonoides/síntese química , Flavonoides/química , Flavonoides/farmacologia , Ácido Glicirrízico/síntese química , Ácido Glicirrízico/química , Ácido Glicirrízico/farmacologia , Hialuronoglucosaminidase/metabolismo , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
We synthesized the novel tricyclic thiolactams 2a-d, 3d-k, having a benzyl or substituted benzyl substituent on the nitrogen of indole subunit, and their preferential cytotoxicity under both nutrient-deprived medium (NDM) and Dulbecco's modified Eagle's medium (DMEM) was evaluated against a human pancreatic cancer cell line PANC-1. Among the tested compounds, the 4'-hydroxy derivative 3d showed the most potent cytotoxicity in NDM (PC50 1.68µM) although the moderate preferential cytotoxicity (PC50 1.68µM in NDM vs PC50 20µM in DMEM). The 3'-hydroxy derivative 3e exhibited the most preferential cytotoxicity (PC50 1.96µM in NDM vs less than 50% inhibition at 30µM in DMEM). The benzyl 2a and halogenated benzyl derivatives 2b,c showed no cytotoxicity in NDM. In addition, the indole (10, PC50 173.7µM), lactone (11, PC50 131.7µM), and lactam (12, PC50 44.8µM) derivatives showed week or moderate cytotoxicity in NDM. These results indicated that the hydroxy group on the benzyl substituent and tricyclic thiolactam ring were essential for the cytotoxicity in NDM against PANC-1 cell line. Moreover, 3'-hydroxy derivative 3e compound exhibited antitumor activity against the pancreatic ductal adenocarcinoma (PDAC) xenograft model in vivo.
Assuntos
Antineoplásicos/farmacologia , Lactamas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Compostos de Sulfidrila/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lactamas/síntese química , Lactamas/química , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Pancreáticas/patologia , Relação Estrutura-Atividade , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/químicaRESUMO
We report on the synthesis and biological evaluation of a series of α-1-C-alkylated 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) derivatives as pharmacological chaperones for Gaucher disease. The parent compound, DAB, did not show inhibition of human ß-glucocerebrosidase but showed moderate intestinal α-glucosidase inhibition; in contrast, extension of α-1-C-alkyl chain length gave a series of highly potent and selective inhibitors of the ß-glucocerebrosidase. Our design of α-1-C-tridecyl-DAB (5j) produced a potent inhibitor of the ß-glucocerebrosidase, with IC50 value of 0.77 µM. A molecular docking study revealed that the α-1-C-tridecyl group has a favorable interaction with the hydrophobic pocket and the sugar analogue part (DAB) interacted with essential hydrogen bonds formed to Asp127, Glu235 and Glu340. Furthermore, α-1-C-tridecyl-DAB (5j) displayed enhancement of activity at an effective concentration 10-times lower than isofagomine. α-1-C-Tridecyl-DAB therefore provides the first example of a pyrrolidine iminosugar as a new class of promising pharmacological chaperones with the potential for treatment of Gaucher disease.
Assuntos
Doença de Gaucher/tratamento farmacológico , Imino Açúcares/química , Imino Açúcares/farmacologia , Simulação de Acoplamento Molecular , Pirrolidinas/química , Pirrolidinas/farmacologia , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Doença de Gaucher/metabolismo , Glucosilceramidase/antagonistas & inibidores , Glucosilceramidase/metabolismo , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Imino Açúcares/síntese química , Relação Estrutura-AtividadeRESUMO
Reverse aldol opening renders amides of 3-hydroxyazetidinecarboxylic acids (3-OH-Aze) unstable above pH 8. Aze, found in sugar beet, is mis-incorporated for proline in peptides in humans and is associated with multiple sclerosis and teratogenesis. Aze-containing peptides may be oxygenated by prolyl hydroxylases resulting in potential damage of the protein by a reverse aldol of the hydroxyazetidine; this, rather than changes in conformation, may account for the deleterious effects of Aze. This paper describes the synthesis of 3-fluoro-Aze amino acids as hydroxy-Aze analogues which are not susceptible to aldol cleavage. 4-(Azidomethyl)-3-fluoro-Aze and 3,4-difluoroproline are new peptide building blocks. trans,trans-2,4-Dihydroxy-3-fluoroazetidine, an iminosugar, inhibits the growth of pancreatic cancer cells to a similar degree as gemcitabine.
Assuntos
Antineoplásicos/farmacologia , Azetidinas/farmacologia , Imino Açúcares/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Peptídeos/química , Prolina/análogos & derivados , Antineoplásicos/síntese química , Antineoplásicos/química , Azetidinas/síntese química , Azetidinas/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Imino Açúcares/química , Conformação Molecular , Neoplasias Pancreáticas/patologia , Prolina/química , Prolina/farmacologia , Relação Estrutura-AtividadeRESUMO
This paper identifies the required configuration and orientation of α-glucosidase inhibitors, miglitol, α-1-C-butyl-DNJ, and α-1-C-butyl-LAB for binding to ntSI (isomaltase). Molecular dynamics (MD) calculations suggested that the flexibility around the keyhole of ntSI is lower than that of ctSI (sucrase). Furthermore, a molecular-docking study revealed that a specific binding orientation with a CH-π interaction (Trp370 and Phe648) is a requirement for achieving a strong affinity with ntSI. On the basis of these results, a new class of nortropane-type iminosugars, labystegines, hybrid iminosugars of LAB and calystegine, have been designed and synthesized efficiently from sugar-derived cyclic nitrones with intramolecular 1,3-dipolar cycloaddition or samarium iodide catalyzed reductive coupling reaction as the key step. Biological evaluation showed that our newly designed 3(S)-hydroxy labystegine (6a) inherited the selectivity against intestinal α-glucosidases from LAB, and its inhibition potency was 10 times better than that of miglitol. Labystegine, therefore, represents a promising new class of nortropane-type iminosugar for improving postprandial hyperglycemia.
Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Imino Açúcares/farmacologia , Nortropanos/farmacologia , Sacarase/antagonistas & inibidores , alfa-Glucosidases/metabolismo , Arabinose/química , Sítios de Ligação/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Imino Furanoses/química , Imino Açúcares/síntese química , Imino Açúcares/química , Intestinos/enzimologia , Conformação Molecular , Simulação de Dinâmica Molecular , Nortropanos/síntese química , Nortropanos/química , Sacarase/metabolismo , Álcoois Açúcares/química , Tropanos/químicaRESUMO
Fluorinated and conformationally fixed derivatives of L-homoDMDP, i.e., 2,5-dideoxy-2,5-imino-DL-glycero-L-manno-heptitol, have been synthesized from d-xylose-derived cyclic nitrone 10 with oxazolidinone 19 or 28 and oxazinanone 22 or 32 as key intermediates. An evaluation of glycosidase inhibition showed replacement of the C-6 hydroxyl groups with fluoride in L-homoDMDP and its C-6 epimer did not have a significant influence on α-glucosidase inhibition by these iminosugars, while replacement of an amino group with a cyclic carbamate group in most conformationally fixed derivatives led to a sharp decrease in the level of glycosidase inhibition, revealing the importance of the free amino group in interaction of enzymes with these molecules.
Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Imino Açúcares/química , Oxazolidinonas/síntese química , alfa-Glucosidases/química , Halogenação , Imino Açúcares/síntese química , Conformação Molecular , Estrutura Molecular , Oxazolidinonas/química , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
We report the isolation and structural determination of fourteen iminosugars, containing five pyrrolizidines and five indolizidines, from Castanospermum australe. The structure of a new alkaloid was elucidated by spectroscopic methods as 6,8-diepi-castanospermine (13). Our side-by-side comparison between bicyclic and corresponding monocyclic iminosugars revealed that inhibition potency and spectrum against each enzyme are clearly changed by their core structures. Castanospermine (10) and 1-deoxynojirimycin (DNJ) have a common d-gluco configuration, and they showed the expected similar inhibition potency and spectrum. In sharp contrast, 6-epi-castanospermine (12) and 1-deoxymannojirimycin (manno-DNJ) both have the d-manno configuration but the α-mannosidase inhibition of 6-epi-castanospermine (12) was much better than that of manno-DNJ. 6,8-Diepi-castanospermine (13) could be regarded as a bicyclic derivative of talo-DNJ, but it showed a complete loss of α-galactosidase A inhibition. This behavior against α-galactosidase A is similar to that observed for 1-epi-australine (6) and altro-DMDP.
Assuntos
Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Castanospermum/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Imino Açúcares/isolamento & purificação , Imino Açúcares/farmacologia , Indolizinas/isolamento & purificação , Indolizinas/farmacologia , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/farmacologia , Alcaloides/química , Inibidores Enzimáticos/química , Glucosamina/análogos & derivados , Glucosamina/química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Imino Açúcares/química , Indolizinas/química , Piperidinas/farmacologia , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
The first synthesis of 1,2-trans-homoiminosugars devised as mimics of ß-D-GlcNAc and α-D-ManNAc is described. Key steps include a regioselective azidolysis of a cyclic sulfite and a ß-amino alcohol skeletal rearrangement applied to a polyhydroxylated azepane. The ß-D-GlcNAc derivative has been coupled to serine to deliver an iminosugar C-amino acid. The two homoiminosugars demonstrate moderate glycosidase inhibition.
Assuntos
Amino Álcoois/síntese química , Inibidores Enzimáticos/química , Galactosamina/síntese química , Glucosamina/síntese química , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/química , Compostos Heterocíclicos/química , Amino Álcoois/química , Galactosamina/análogos & derivados , Galactosamina/química , Glucosamina/análogos & derivados , Glucosamina/química , Espectroscopia de Ressonância Magnética , Estrutura MolecularRESUMO
A series of α-1-C-4'-arylbutyl-L-arabinoiminofuranoses 3 with functional groups attached to the phenyl ring, which are potential α-glycosidase inhibitors, was designed and synthesized by using a Negishi cross-coupling reaction as the key reaction. Arylbutyl derivatives 3a-e showed potent inhibitory activities against intestinal maltase. Among them, difluorophenylbutyl derivative 3e showed good inhibition activities against intestinal isomaltase and sucrase as compared to those of 1 and commercial drugs.
Assuntos
Inibidores de Glicosídeo Hidrolases/farmacologia , Imino Açúcares/farmacologia , alfa-Glucosidases/metabolismo , Relação Dose-Resposta a Droga , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Humanos , Imino Açúcares/síntese química , Imino Açúcares/química , Intestinos/enzimologia , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
The adsorption of Bevacizumab, Trastuzumab, Rituximab, Nedaplatin, Vincristine sulfate, Nogitecan hydrochloride, Actinomycin D and Ramosetron hydrochloride to 0.2 µm endotoxin-retentive in-line filters was evaluated with pediatric doses by UV spectrophotometry. The results indicated that some drug adsorption was shown with Nogitecan hydrochloride, Actinomycin D and Ramosetron hydrochloride, and good recovery was shown with the other five drugs. For the three drugs which showed some losses, drug recovery was investigated at multiple test doses. The approximation formula for each drug adsorption was recorded as Y=100-A/X (X: dose (mg), Y: recovery rate (%), A: a constant for individual drug). The results showed there was high correlation between the reciprocal of test drug dose and the recovery rate. Furthermore, in the cases where adsorption to the filter were observed, it was found that it was possible to determine the relationship between dose and the recovery rate from a filterability test with one point pediatric dose. Since the recovery rate obtained from the approximation formula with multiple doses and that calculated from the prediction formula with one point pediatric dose were almost the same, then it was concluded that it is not necessary to conduct the filterability tests with multiple doses. We have shown that using UV spectrophotometry and carrying out a filterability test using one point pediatric dose is relatively easy method and reduces the effort and expense. This method for analysis of drug adsorption is extremely useful when using in-line filters with infusion therapy.