Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acad Med ; 97(9): 1341-1345, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35507458

RESUMO

PROBLEM: Physicians are playing a growing role as clinician-innovators. Academic physicians are well positioned to contribute to the medical device innovation process, yet few medical school curricula provide students opportunities to learn the conceptual framework for clinical needs finding, needs screening, concept generation and iterative prototyping, and intellectual property management. This framework supports innovation and encourages the development of valuable interdisciplinary communication skills and collaborative learning strategies. APPROACH: Our university offers a novel 3-year-long medical student Longitudinal Interdisciplinary Elective in Biodesign (MSLIEB) that teaches medical device innovation in 4 stages: (1) seminars and small-group work, (2) shared clinical experiences for needs finding, (3) concept generation and product development by serving as consultants for biomedical engineering capstone projects, and (4) reflection and mentorship. The MSLIEB objectives are to: create a longitudinal interdisciplinary peer mentorship relationship between undergraduate biomedical engineering students and medical students, and encourage codevelopment of professional identities in relation to medical device innovation. OUTCOMES: The MSLIEB enrolled 5 entering cohorts from 2017 to 2021 with a total of 37 medical student participants. The first full entering cohort of 12 medical students produced 8 mentored biomedical engineering capstone projects, 7 of which were based on clinical needs statements derived from earlier in the elective. Medical student participants have coauthored poster and oral presentations; contributed to projects that won WolfieTank, a university-wide competition modeled after the television show Shark Tank; and participated in the filing of provisional patents. Students reflecting on the course reported a change in their attitude towards existing medical problems, felt better-equipped to collaboratively design solutions for clinical needs, and considered a potential career path in device design. NEXT STEPS: The MSLIEB will be scaled up by recruiting additional faculty, broadening clinical opportunities to include the outpatient setting, and increasing medical student access to rapid prototyping equipment.


Assuntos
Educação de Graduação em Medicina , Estudantes de Medicina , Currículo , Humanos , Aprendizagem , Faculdades de Medicina
2.
Brain Res ; 1786: 147903, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35381214

RESUMO

Prognosticating recovery of consciousness after severe traumatic brain injury (TBI) is a difficult task. Understanding the mechanism of recovery of consciousness in these patients will undoubtedly help clarify this issue. Recent research has underscored the importance of electrophysiological data in characterizing the state of the brain during this period of unconsciousness. Here, we investigated cortical electrophysiological recordings from a single TBI patient and discovered that high-frequency activity associated with the return of consciousness reappeared in a spatiotemporal fashion. We observed a shift toward higher frequencies first in the anterior cingulate cortex, and then later in the dorsolateral prefrontal cortex. This finding suggests that recovery may originate in more internal cortices and progress to superficial ones. Although this observation occurred in a single patient, it points to a potential mechanism for recovery of normal cortical activity in the return of consciousness following TBI.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Encéfalo , Lesões Encefálicas/complicações , Lesões Encefálicas Traumáticas/complicações , Estado de Consciência/fisiologia , Humanos , Inconsciência
3.
Prog Neurobiol ; 210: 102215, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34995694

RESUMO

Major theories of consciousness predict that complex electroencephalographic (EEG) activity is required for consciousness, yet it is not clear how such activity arises in the corticothalamic system. The thalamus is well-known to control cortical excitability via interlaminar projections, but whether thalamic input is needed for complexity is not known. We hypothesized that the thalamus facilitates complex activity by adjusting synaptic connectivity, thereby increasing the availability of different configurations of cortical neurons (cortical "states"), as well as the probability of state transitions. To test this hypothesis, we characterized EEG activity from prefrontal cortex (PFC) in traumatic brain injury (TBI) patients with and without injuries to thalamocortical projections, measured with diffusion tensor imaging (DTI). We found that injury to thalamic projections (especially from the mediodorsal thalamus) was strongly associated with unconsciousness and delta-band EEG activity. Using advanced signal processing techniques, we found that lack of thalamic input led to 1.) attractor dynamics for cortical networks with a tendency to visit the same states, 2.) a reduced repertoire of possible states, and 3.) high predictability of transitions between states. These results imply that complex PFC activity associated with consciousness depends on thalamic input. Our model implies that restoration of cortical connectivity is a critical function of the thalamus after brain injury. We draw a critical connection between thalamic input and complex cortical activity associated with consciousness.


Assuntos
Lesões Encefálicas Traumáticas , Imagem de Tensor de Difusão , Córtex Cerebral , Estado de Consciência/fisiologia , Humanos , Vias Neurais , Córtex Pré-Frontal , Tálamo
4.
Commun Biol ; 4(1): 1210, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675341

RESUMO

The return of consciousness after traumatic brain injury (TBI) is associated with restoring complex cortical dynamics; however, it is unclear what interactions govern these complex dynamics. Here, we set out to uncover the mechanism underlying the return of consciousness by measuring local field potentials (LFP) using invasive electrophysiological recordings in patients recovering from TBI. We found that injury to the thalamus, and its efferent projections, on MRI were associated with repetitive and low complexity LFP signals from a highly structured phase space, resembling a low-dimensional ring attractor. But why do thalamic injuries in TBI patients result in a cortical attractor? We built a simplified thalamocortical model, which connotes that thalamic input facilitates the formation of cortical ensembles required for the return of cognitive function and the content of consciousness. These observations collectively support the view that thalamic input to the cortex enables rich cortical dynamics associated with consciousness.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Eletrocorticografia , Tálamo/fisiopatologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA