Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(6): 2129-2136, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36881964

RESUMO

Nanostructuring on length scales corresponding to phonon mean free paths provides control over heat flow in semiconductors and makes it possible to engineer their thermal properties. However, the influence of boundaries limits the validity of bulk models, while first-principles calculations are too computationally expensive to model real devices. Here we use extreme ultraviolet beams to study phonon transport dynamics in a 3D nanostructured silicon metalattice with deep nanoscale feature size and observe dramatically reduced thermal conductivity relative to bulk. To explain this behavior, we develop a predictive theory wherein thermal conduction separates into a geometric permeability component and an intrinsic viscous contribution, arising from a new and universal effect of nanoscale confinement on phonon flow. Using experiments and atomistic simulations, we show that our theory applies to a general set of highly confined silicon nanosystems, from metalattices, nanomeshes, porous nanowires, to nanowire networks, of great interest for next-generation energy-efficient devices.

2.
Sci Rep ; 12(1): 16818, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207383

RESUMO

Bright, energetic, and directional electron bunches are generated through efficient energy transfer of relativistic intense (~ 1019 W/cm2), 30 femtosecond, 800 nm high contrast laser pulses to grating targets (500 lines/mm and 1000 lines/mm), under surface plasmon resonance (SPR) conditions. Bi-directional relativistic electron bunches (at 40° and 150°) are observed exiting from the 500 lines/mm grating target at the SPR conditions. The surface plasmon excited grating target enhances the electron flux and temperature by factor of 6.0 and 3.6, respectively, compared to that of the plane substrate. Particle-in-Cell simulations indicate that fast electrons are emitted in different directions at different stages of the laser interaction, which are related to the resultant surface magnetic field evolution. This study suggests that the SPR mechanism can be used to generate multiple, bright, ultrafast relativistic electron bunches for a variety of applications.

3.
ACS Appl Mater Interfaces ; 14(36): 41316-41327, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36054507

RESUMO

Semiconductor metalattices consisting of a linked network of three-dimensional nanostructures with periodicities on a length scale <100 nm can enable tailored functional properties due to their complex nanostructuring. For example, by controlling both the porosity and pore size, thermal transport in these phononic metalattices can be tuned, making them promising candidates for efficient thermoelectrics or thermal rectifiers. Thus, the ability to characterize the porosity, and other physical properties, of metalattices is critical but challenging, due to their nanoscale structure and thickness. To date, only metalattices with high porosities, close to the close-packing fraction of hard spheres, have been studied experimentally. Here, we characterize the porosity, thickness, and elastic properties of a low-porosity, empty-pore silicon metalattice film (∼500 nm thickness) with periodic spherical pores (∼tens of nanometers), for the first time. We use laser-driven nanoscale surface acoustic waves probed by extreme ultraviolet scatterometry to nondestructively measure the acoustic dispersion in these thin silicon metalattice layers. By comparing the data to finite element models of the metalattice sample, we can extract Young's modulus and porosity. Moreover, by controlling the acoustic wave penetration depth, we can also determine the metalattice layer thickness and verify the substrate properties. Additionally, we utilize electron tomography images of the metalattice to verify the geometry and validate the porosity extracted from scatterometry. These advanced characterization techniques are critical for informed and iterative fabrication of energy-efficient devices based on nanostructured metamaterials.

4.
Opt Express ; 29(4): 4947-4957, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726040

RESUMO

Dispersive dielectric multilayer mirrors, high-dispersion chirped mirrors in particular, are widely used in modern ultrafast optics to manipulate spectral chirps of ultrashort laser pulses. Dispersive mirrors are routinely designed for dispersion compensation in ultrafast lasers and are assumed to be linear optical components. In this work, we report the experimental characterization of an unexpectedly strong nonlinear response in these chirped mirrors. At modest peak intensities <2 TW/cm2-well below the known laser-induced damage threshold of these dielectric structures-we observed a strong reflectivity decrease, local heating, transient spectral modifications, and time-dependent absorption of the incident pulse. Through computational analysis, we found that the incident laser field can be enhanced by an order of magnitude in the dielectric layers of the structure. The field enhancement leads to a wavelength-dependent nonlinear absorption, that shows no signs of cumulative damage before catastrophic failure. The nonlinear absorption is not a simply two-photon process but instead is likely mediated by defects that facilitate two-photon absorption. To mitigate this issue, we designed and fabricated a dispersive multilayer design that strategically suppresses the field enhancement in the high-index layers, shifting the high-field regions to the larger-bandgap, low-index layers. This strategy significantly increases the maximum peak intensity that the mirror can sustain. However, our finding of an onset of nonlinear absorption even at 'modest' fluence and peak intensity has significant implications for numerous past published experimental works employing dispersive mirrors. Additionally, our results will guide future ultrafast experimental work and ultrafast laser design.

5.
Nat Commun ; 8: 15970, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28665398

RESUMO

Turbulent magnetic fields abound in nature, pervading astrophysical, solar, terrestrial and laboratory plasmas. Understanding the ubiquity of magnetic turbulence and its role in the universe is an outstanding scientific challenge. Here, we report on the transition of magnetic turbulence from an initially electron-driven regime to one dominated by ion-magnetization in a laboratory plasma produced by an intense, table-top laser. Our observations at the magnetized ion scale of the saturated turbulent spectrum bear a striking resemblance with spacecraft measurements of the solar wind magnetic-field spectrum, including the emergence of a spectral kink. Despite originating from diverse energy injection sources (namely, electrons in the laboratory experiment and ion free-energy sources in the solar wind), the turbulent spectra exhibit remarkable parallels. This demonstrates the independence of turbulent spectral properties from the driving source of the turbulence and highlights the potential of small-scale, table-top laboratory experiments for investigating turbulence in astrophysical environments.

6.
Opt Express ; 24(25): 28419-28432, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958487

RESUMO

Ultra-high intensity (> 1018 W/cm2), femtosecond (~30 fs) laser induced fast electron transport in a transparent dielectric has been studied for two laser systems having three orders of magnitude different peak to pedestal intensity contrast, using ultrafast time-resolved shadowgraphy. Use of a 400 nm femtosecond pulse as a probe enables the exclusive visualization of the dynamics of highest density electrons (> 7 × 1021 cm-3) observed so far. High picosecond contrast (~109) results in greater coupling of peak laser energy to the plasma electrons, enabling long (~1 mm), collimated (divergence angle ~2°) transport of fast electrons inside the dielectric medium at relativistic speeds (~0.66c). In comparison, the laser system with a contrast of ~106 has a large pre-plasma, limiting the coupling of laser energy to the solid and yielding limited fast electron injection into the dielectric. In the lower contrast case, bulk of the electrons expand as a cloud inside the medium with an order of magnitude lower speed than that of the fast electrons obtained with the high contrast laser. The expansion speed of the plasma towards vacuum is similar for the two contrasts.

7.
Sci Rep ; 5: 17870, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26648399

RESUMO

The absorption of ultraintense, femtosecond laser pulses by a solid unleashes relativistic electrons, thereby creating a regime of relativistic optics. This has enabled exciting applications of relativistic particle beams and coherent X-ray radiation, and fundamental leaps in high energy density science and laboratory astrophysics. Obviously, central to these possibilities lies the basic problem of understanding and if possible, manipulating laser absorption. Surprisingly, the absorption of intense light largely remains an open question, despite the extensive variations in target and laser pulse structures. Moreover, there are only few experimental measurements of laser absorption carried out under very limited parameter ranges. Here we present an extensive investigation of absorption of intense 30 femtosecond laser pulses by solid metal targets. The study, performed under varying laser intensity and contrast ratio over four orders of magnitude, reveals a significant and non-intuitive dependence on these parameters. For contrast ratio of 10(-9) and intensity of 2 × 10(19)W cm(-2), three observations are revealed: preferential acceleration of electrons along the laser axis, a ponderomotive scaling of electron temperature, and red shifting of emitted second-harmonic. These point towards the role of J × B absorption mechanism at relativistic intensity. The experimental results are supported by particle-in-cell simulations.

8.
Phys Rev Lett ; 114(11): 115001, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25839282

RESUMO

We present a hitherto unobserved facet of hydrodynamics, namely the generation of an ultrahigh frequency acoustic disturbance in the terahertz frequency range, whose origins are purely hydrodynamic in nature. The disturbance is caused by differential flow velocities down a density gradient in a plasma created by a 30 fs, 800 nm high-intensity laser (∼5×10(16) W/cm(2)). The picosecond scale observations enable us to capture these high frequency oscillations (1.9±0.6 THz) which are generated as a consequence of the rapid heating of the medium by the laser. Adoption of two complementary techniques, namely pump-probe reflectometry and pump-probe Doppler spectrometry provides unambiguous identification of this terahertz acoustic disturbance. Hydrodynamic simulations well reproduce the observations, offering insight into this process.

9.
Opt Express ; 22(19): 22320-7, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25321704

RESUMO

We present time-resolved reflectivity and transmissivity of hot, overdense plasma by employing a multicolor probe beam, consisting of harmonics at wavelengths of 800 nm, 400 nm and 266 nm. The hot-dense plasma, formed by exciting a fused silica target with a 30 fs, 2 × 10(17) W cm(-2) intensity pulse, shows a sub-picosecond transition in reflectivity (transmissivity), and a wavelength-dependent fall (rise) in the reflected (transmitted) signal. A simple model of probe absorption in the plasma via inverse bremsstrahlung is used to determine electron-ion collision frequency at different plasma densities.


Assuntos
Proteínas de Bactérias/química , Óptica e Fotônica , Elétrons , Fatores de Tempo
10.
Rev Sci Instrum ; 85(1): 013505, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24517763

RESUMO

A pump-probe polarimetric technique is demonstrated, which provides a complete, temporally and spatially resolved mapping of the megagauss magnetic fields generated in intense short-pulse laser-plasma interactions. A normally incident time-delayed probe pulse reflected from its critical surface undergoes a change in its ellipticity according to the magneto-optic Cotton-Mouton effect due to the azimuthal nature of the ambient self-generated megagauss magnetic fields. The temporal resolution of the magnetic field mapping is typically of the order of the pulsewidth, limited by the laser intensity contrast, whereas a spatial resolution of a few µm is achieved by this optical technique. High-harmonics of the probe can be employed to penetrate deeper into the plasma to even near-solid densities. The spatial and temporal evolution of the megagauss magnetic fields at the target front as well as at the target rear are presented. The µm-scale resolution of the magnetic field mapping provides valuable information on the filamentary instabilities at the target front, whereas probing the target rear mirrors the highly complex fast electron transport in intense laser-plasma interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA