Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 26(1): 27-44, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37259532

RESUMO

We examined the efficacy of 2,4-dichlorophenoxy acetic acid (2,4-D; 500 µM) in enhancing the potential of Salvinia species for tolerance to aluminum (Al) toxicity (240 and 480 µM, seven days). Salvinia showed better efficacy in removal of toxicity of Al by sorption mechanism with changes of bond energy shifting on cell wall residues and surface structure. Plants recorded tolerance to Al concentration (480 µM) when pretreated with 2,4-D through adjustment of relative water content, proline content, osmotic potential, and improved the pigment fluorescence for energy utilization under Al stress. Photosynthetic activities with regards to NADP-malic enzyme and malic dehydrogenase and sugar metabolism with wall and cytosolic invertase activities were strongly correlated with compatible solutes. A less membrane peroxidation and protein carbonylation had reduced ionic loss over the membrane that was studied with reduced electrolyte leakage with 2,4-D pretreated plants. Membrane stabilization was also recorded with higher ratio of K+ to Na+, thereby suggesting roles of 2,4-D in ionic balance. Better sustenance of enzymatic antioxidation with peroxidase and glutathione metabolism reduced reactive oxygen species accumulation and save the plant for oxidative damages. Moreover, gene polymorphism for antioxidant, induced by 2,4-D varied through Al concentrations would suggest an improved biomarker for tolerance. Collectively, analysis and discussion of plant's responses assumed that auxin herbicide could be a potential phytoprotectant for Salvinia as well as improving the stability to Al toxicity and its bioremediation efficacy.


In previous reports, aquatic weeds, particularly, from pteridophytic flora have been exercised, however, in less frequent. Aluminum (Al) toxicity, being a major problem, specifically with respect to cultivated crops like rice and vegetables, is a serious issue in alkaline soil. In context to growth of Salvinia in the areas of low lands where few important crops like rice are frequently cultivated. Therefore, Al toxicity with regards to rice cultivation in low land conditions, which is habitat for Salvinia, could be interesting. Thus, decontamination of low land for salinity with aquatic environment can be remediated with biological materials where Salvinia would be a choice. This would be something new in studies for the aquatic weeds over the existing database. Moreover, 2,4-dichlorophenoxy acetic acid (2,4-D) being a common herbicide in agricultural field that becomes more problematic with metal toxicity is another focus for physiological responses with Salvinia. The adoption and sustainability of Salvinia against 2,4-D may highlight insights for physiological activities would be the biomarker for herbicide toxicity.


Assuntos
Alumínio , Antioxidantes , Alumínio/toxicidade , Alumínio/metabolismo , Biodegradação Ambiental , Antioxidantes/metabolismo , Estresse Oxidativo , Plantas/metabolismo , Ácido 2,4-Diclorofenoxiacético/metabolismo
2.
Plant Physiol Biochem ; 202: 107980, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37634334

RESUMO

This study aimed at investigating the influence of exogenous abscisic acid (ABA) on salt homeostasis under 100 mM NaCl stress in maize (Zea mays L. cv. Kaveri 50) through 3 and 5 days of exposure. The ratio of Na+ to K+, hydrogen peroxide (H2O2) and superoxide (O2•‒) accumulation, electrolyte leakage were the major determinants for salt sensitivity. Pretreatment with ABA [ABA (+)] had altered the salt sensitivity of plants maximally through 5 days of treatment. Plants controlled well for endogenous ABA level (92% increase) and bond energy minimization of cell wall residues to support salt tolerance proportionately to ABA (+). Salt stress was mitigated through maintenance of relative water content (RWC) (16%), glycine betaine (GB) (26%), proline (28%) and proline biosynthesis enzyme (ΔP5CS) (26%) under the application of ABA (+). Minimization of lipid peroxides (6% decrease), carbonyl content (9% decrease), acid, alkaline phosphatase activities were more tolerated under 100 mM salinity at 5 days duration. Malate metabolism for salt tolerance was dependent on the activity of the malic enzyme, malate dehydrogenase through transcript abundance in real-time manner as a function of ABA (+). Establishment of oxidative stress through days under salinity recorded by NADPH-oxidase activity (39% increase) following ROS generation as detected in tissue specific level. The ABA (+) significantly altered redox homeostasis through ratio of AsA to DHA (21% increase), GSH to GSSG (12% increase) by dehydroascorbate reductase and glutathione reductase respectively, and other enzymes like guaiacol peroxidase, catalase, glutathione reductase activities. The ABA in priming was substantially explained in stress metabolism as biomarker for salinity stress with reference to maize.


Assuntos
Hipertensão , Zea mays , Plântula , Ácido Abscísico , Espécies Reativas de Oxigênio , Tolerância ao Sal , Glutationa Redutase , Peróxido de Hidrogênio , Homeostase
3.
Plants (Basel) ; 12(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37176895

RESUMO

We revealed the functional characterization of C4-NADP-malic enzyme (NADP-ME), extracted and partially purified from maize (Zea mays L. cv. Kaveri 50). The leaf discs were previously activated under 1000-1200 µE m-2 s-1, incubated in bicarbonate (2.0 mM) solution, and subjected to salt stress (100 mM NaCl). Initially, salt stress was evident from the accumulations of proline, chlorophyll content, carbohydrate profile, and Hill activity influencing the C4 enzyme. Primarily, in illuminated tissues, the activity of the enzyme recorded a reduced trend through salinity irrespective of light and darkness compared to the control. On illumination, the kinetic parameters such as Vmax of the enzyme increased by 1.36-fold compared to in the dark under salinity whereas Km was decreased by 20% under the same condition. The extent of light induction was proportionate to limiting (0.01 mM) and saturated (4.0 mM) malate concentrations for enzyme activity. Moreover, the catalytic properties of the enzyme were also tested on concomitant responses to activator (citrate and succinate) and inhibitor (oxalate and pyruvate) residues. The sensitivity to light and dark effects was also tested for reducing agents such as dithiothreitol, suggesting the effect of the changes in redox on the regulatory properties of the enzyme. The ratio of enzyme activity under light and darkness in the presence or absence of a reducing agent was concomitantly increased with varying malate concentrations. At the molecular level, protein polymorphism of the enzyme represented minor variations in band intensities, however, not in numbers through salinity subjected to light and darkness. Therefore, salinity-induced changes in the decarboxylation reaction, evident by NADP-ME activity, may be based on the redox property of regulatory sites and sensitivity to light and darkness.

4.
Plants (Basel) ; 11(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36297762

RESUMO

We investigated the role of two different plant growth-promoting probiotic bacteria in conferring cadmium (Cd) tolerance in rapeseed (Brassica campestris cv. BARI Sarisha-14) through improving reactive oxygen species scavenging, antioxidant defense, and glyoxalase system. Soil, as well as seeds of rapeseed, were separately treated with probiotic bacteria, Paraburkholderia fungorum BRRh-4 and Delftia sp. BTL-M2. Fourteen-day-old seedlings were exposed to 0.25 and 0.5 mM CdCl2 for two weeks. Cadmium-treated plants resulted in a higher accumulation of hydrogen peroxide, increased lipid peroxidation, electrolyte leakage, chlorophyll damage, and impaired antioxidant defense and glyoxalase systems. Consequently, it reduced plant growth and biomass production, and yield parameters. However, probiotic bacteria-inoculated plants significantly ameliorated the Cd toxicity by enhancing the activities of antioxidant enzymes (ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, glutathione reductase, glutathione peroxidase, and catalase) and glyoxalase enzymes (glyoxalase I and glyoxalase II) which led to the mitigation of oxidative damage indicated by reduced hydrogen peroxide, lipid peroxidation, and electrolyte leakage that ultimately improved growth, physiology, and yield of the bacterial inoculants rapeseed plants. When taken together, our results demonstrated the potential role of the plant probiotic bacteria, BRRh-4 and BTL-M2, in mitigating the Cd-induced damages in rapeseed plants.

5.
Plants (Basel) ; 11(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35448812

RESUMO

Hydroponic culture containing 200 mM NaCl was used to induce oxidative stress in seedlings of cultivars initially primed with 1 mM SNP and 10 µM ABA. Exogenous application of sodium nitroprusside (SNP - a nitric oxide donor) and abscisic acid (ABA) was well sensitized more in cv. Swarna Sub1 than cv. Swarna and also reflected in different cellular responses. The major effects of salinity, irrespective of the cultivar, were lowering the water relation, including relative water content and osmotic potential, and decreasing the compatible solutes like alanine, gamma-aminobutyric acid, and glycine betaine. The accumulated polyamines were reduced more in cv. Swarna with a concomitant decrease in photosynthetic reserves. NADP-malic enzyme activity, sucrose accumulation, ascorbate peroxidase, and glutathione S-transferase activities gradually declined under NaCl stress and the catabolizing enzymes like invertase (both wall and cytosolic forms) also declined. On the contrary, plants suffered from oxidative stress through superoxide, hydrogen peroxide, and their biosynthetic enzymes like NADP(H) oxidase. Moderation of Na+/K+ by both SNP and ABA were correlated with other salt sensitivities in the plants. The maximum effects of SNP and ABA were found in the recovery of antioxidation pathways, osmotic tolerance, and carbohydrate metabolism. Findings predict the efficacy of SNP and ABA either independently or cumulatively in overcoming NaCl toxicity in rice.

6.
Plants (Basel) ; 11(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35214848

RESUMO

Capsicum is one of the most perishable fruit which undergo rapid loss of commercial value during postharvest storage. In this experiment our aim is to evaluate the effect of photoactivated TiO2 nano-particle complexed with chitosan or TiO2-nanocomposite (TiO2-NC) on extension self-life of Capsicum fruit and its effect on related morphological, physiological and molecular attributes at room temperature (25 °C). Initially, TiO2-NC coated fruits recorded superior maintenance of total soluble solids accumulation along with retention of firmness, cellular integrity, hydration, color etc. On the extended period of storage, fruit recorded a lower bioaccumulation of TiO2 in comparison to metallic silver over the control. On the level of gene expression for ethylene biosynthetic and signaling the TiO2-NC had more regulation, however, discretely to moderate the ripening. Thus, ACC synthase and oxidase recorded a significantly better downregulation as studied from fruit pulp under TiO2-NC than silver. On the signaling path, the transcripts for CaETR1 and CaETR2 were less abundant in fruit under both the treatment when studied against control for 7 d. The reactive oxygen species (ROS) was also correlated to retard the oxidative lysis of polyamine oxidation by diamine and polyamine oxidase activity. The gene expression for hydrolytic activity as non-specific esterase had corroborated the development of essential oil constituents with few of those recorded in significant abundance. Therefore, TiO2-NC would be reliable to induce those metabolites modulating ripening behavior in favor of delayed ripening. From gas chromatography-mass spectrometry (GC-MS) analysis profile of all tested essential oil constituents suggesting positive impact of TiO2-NC on shelf-life extension of Capsicum fruit. Our results indicated the potentiality of TiO2-NC in postharvest storage those may connect ethylene signaling and ROS metabolism in suppression of specific ripening attributes.

7.
Environ Sci Pollut Res Int ; 29(6): 9232-9247, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34495473

RESUMO

Sodium (Na) and arsenic (As) toxicity were monitored by hyperaccumulation of metals in Salvinia natans L. with 2,4-dichlorophenoxyacetic acid (2,4-D) induction. Salvinia was recorded with significant bioaccumulation of those metals with de-folding of cellular attributes in sustenance under toxic environment. 2,4-D priming has revised the growth components like net assimilation rate and relative water content to register initial plants' survival against Na and As. Proline biosynthesis supported in the maintenance of osmotic adjustment and plants sustained better activity through subdued electrolytic leakage. Oxidative stress due to both Na and As exposure is responsible for induction under significant moderation of lipid peroxidation and protein carbonization by 2,4-D application was evident to release the stress from metal and metalloids. Reactive oxygen species (ROS) like superoxide and hydrogen peroxide accumulation were monitored with activity of NADP(H)-oxidase. However, it was downregulated by 2,4-D to check the oxidative damages. Superoxide dismutase and peroxidases were significantly moderated to reduce the oxidative degradation for both metals with 2,4-D induction. Glutathione metabolism and recycling of ascorbate with monodehydroascorbate activity were other features to maintain the redox homeostasis for metal toxicity. At the molecular level, polymorphic variations of concern genes in redox cascades demarked significantly for those two metals and established the biomarker for those metals, respectively. As a whole, the biocompatibility of auxin herbicide in Salvinia may raise the possibility for auxin metabolism and thereby, the bioaccumulation to Na and As vis-à-vis tolerance for ecological safety is established.


Assuntos
Arsênio , Ácido 2,4-Diclorofenoxiacético , Arsênio/toxicidade , Estresse Oxidativo , Espécies Reativas de Oxigênio , Sódio/toxicidade
8.
Front Biosci (Landmark Ed) ; 26(11): 1240-1255, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34856765

RESUMO

Waterlogging or flooding in agricultural soil constructs a complex abiotic stress-web in crop plants throughout the lowland agricultural system. In rice, a staple grain crop in the world, submergence creates a long-term and recurrent problem for crops withstanding and their succeeding productivity. Therefore, to restore a satisfactory yield instead of a failure of crop in such submerged areas, the analysis of plants' responses is important. Such analysis will facilitate research about the entity components of plants responses to anoxia or submergence. For example, the development of cellular and molecular cascade in gene expression of ROS signaling and its subsequent responses may lead to either tolerance or susceptibility in plants. Interplay of plant growth regulators [e.g., ethylene (ET), abscisic acid (ABA), gibberellic acid (GA) etc.] is the well-recognized residues in the coordination of signaling, its transmission through cellular network, and finally, modulation of gene expression are the keys to such tolerance. Nucleotide elements that are specifically sensitive to ethylene have been rescued from land-races of aus-type group of rice (Oryza sativa) and those are considered as the prime determinants for tolerance against anoxia. In this comprehensive text, we tried to accommodate and revise the fundamental and pivotal mechanisms of submergence stress at different angles of physiological and cellular responses of plants. These have also been reviewed for modern state of art techniques deciphering the molecular rejoinders like microRNA, protein-protein interaction, feedback regulation of expression, sugar sensing, amplification of elicitor's responses and others. Finally, strategies including physiological selection, metabolic engineering, marker assisted selection, genetical manipulation, interspecific hybridization are involved in developing stress resilience and plants' architecture to support sustainable agriculture under lowland systems.


Assuntos
Oryza , Estresse Fisiológico , Ácido Abscísico , Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Oxigênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Environ Pollut ; 287: 117586, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426386

RESUMO

Arsenite [As(III)] toxicity causes impeded growth, inadequate productivity of plants and toxicity through the food chain. Using various chemical residues for priming is one of the approaches in conferring arsenic tolerance in crops. We investigated the mechanism of abscisic acid (ABA)-induced As(III) tolerance in rice genotypes (cv. Swarna and Swarna Sub1) pretreated with 10 µM of ABA for 24 h and transferred into 0, 25 and 50 µM arsenic for 10 days. Plants showed a dose-dependent bioaccumulation of As(III), oxidative stress indicators like superoxide, hydrogen peroxide, thiobarbituric acid reactive substances and the activity of lipoxygenase. As(III) had disrupted cellular redox that reflecting growth indices like net assimilation rate, relative growth rate, specific leaf weight, leaf mass ratio, relative water content, proline, delta-1-pyrroline-5-carboxylate synthetase and electrolyte leakage. ABA priming was more protective in cv. Swarna Sub1 than Swarna for retrieval of total glutathione pool, non-protein thiols, cysteine, phytochelatin and glutathione reductase. Phosphate metabolisms were significantly curtailed irrespective of genotypes where ABA had moderated phosphate uptake and its metabolizing enzymes like acid phosphatase, alkaline phosphatase and H+/ATPase. Rice seedlings had regulated antioxidative potential with the varied polymorphic expression of those enzymes markedly with antioxidative enzymes. The results have given the possible cellular and physiological traits those may interact with ABA priming in the establishment of plant tolerance with As(III) over accumulation and, thereby, its amelioration for oxidative damages. Finally, cv. Swarna Sub1 was identified as a rice genotype as a candidate for breeding program for sustainability against As(III) stress with cellular and physiological traits serving better for selection pressure.


Assuntos
Arsenitos , Oryza , Ácido Abscísico , Arsenitos/toxicidade , Genótipo , Oryza/genética , Locos de Características Quantitativas , Plântula
10.
Plant Physiol Biochem ; 163: 55-67, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33812227

RESUMO

We investigated the combined effect of chitosan (CHT) and putrescine (PUT) on the postharvest shelf life of Capsicum fruit concerning the metabolism of reactive oxygen species (ROS) through direct and indirect effects on ripening characters cell wall hydrolyzing enzyme and ROS metabolism. The PUT and CHT directly affected quality indices like color, firmness and water loss with a concomitant oxidative bust in the development of O2•- and H2O2 in fruit pulp. This was accompanied by significant suppression of respiratory flux, a decrease of total soluble solids and ascorbic acid content throughout postharvest storage. PUT applied with CHT modified the oxidative metabolism of fruits by a significant reduction in the level of O2•- and H2O2 content. In addition, a significant accumulation of total polyamine under respective treatment was reasonably correlated with both ROS producing enzyme as well as H2O2 and O2•-. Wall hydrolyzing enzymes like pectin methyl esterase and cellulase had marked downregulation both under PUT and CHT + PUT treatment. Moreover, on close observation, the combinational effects of PUT and CHT had better effects in the regulation of those enzymes as compared to individual treatment. Fruits restore higher antioxidative capacities as evident with superoxide dismutase (SOD), guaiacol peroxidases (GPX), ascorbate peroxidase (APX) catalase (CAT), glutathione peroxidase (GPX), NADPH oxidase (NOX) and glutathione reductase (GR), indicating their roles on fruit coat softening. Finally, the treatment of PUT and CHT in combination increased shelf life vis-à-vis the quality of fruit.


Assuntos
Quitosana , Frutas , Antioxidantes , Ascorbato Peroxidases , Catalase , Peróxido de Hidrogênio , Putrescina , Espécies Reativas de Oxigênio , Superóxido Dismutase
11.
Ecotoxicol Environ Saf ; 208: 111708, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396039

RESUMO

In a laboratory based study, Salvinia natans L. was pre-treated with reduced glutathione (GSH) following transfer under 2, 4-Dicholro phenoxy acetic acid (2,4-D), peroxide (H2O2), dark and irradiation. Plants recorded 2, 4-D bio-accumulation and tolerance maximally under 500 µM following absorption kinetics modulated with GSH in changes of relative water content (20.98%), growth rate (3.04%) and net assimilation rate (1.3 fold) over control. GSH pre-treatment minimized the oxidative revelation with reactive oxygen species (ROS) by 5.55% decrease under 2, 4-D and 1.3, 1.2, 0.8 fold increase through the other stresses. Apoplastic NADPH-oxidase expression was moderated by GSH with 11.76% less over the control. Also the activity of alcohol dehydrogenase and glutathione-S-transferase had their altered values by 1.5 and 9.0 fold increases respectively and may serve as biomarkers. The oxidized:reduced glutathione was positively correlated with glutathione-peroxidase (r=+0.99) and negatively with glutathione reductase (r=-0.04). The induced activities sustained oxidized:reduced GSH pool by 1.09 fold and had varied polymorphic gene expression under 2, 4-D and allied stresses. This study may be relevant to consider Salvinia as a potent weed species remediating 2, 4-D toxicity in soil with its wider hyper-accumulating efficiency. The cellular responses in tolerance to oxidative stress and thereby, induced physiological attributes may opt for selection pressures in other weed flora for broader aspects of phytoremediation against xenobiotics like 2, 4-D.


Assuntos
Ácido 2,4-Diclorofenoxiacético/metabolismo , Gleiquênias/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Biodegradação Ambiental/efeitos da radiação , Biomarcadores/metabolismo , Escuridão , Glutationa/farmacologia , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Luz , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Plants (Basel) ; 9(2)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059591

RESUMO

Two chili cultivars, i.e., cv. Bullet and cv. Tejaswini, were evaluated on postharvest related ripening characteristics with varying durations under hydrogen peroxide, putrescine and silver treatments. The reducing sugar was inversely related to the maximum values at 7 days of ripening. Silver and putrescine were the most regulatory in terms of changing of the total carbohydrate content as compared to hydrolysis of the total reducing sugar. Regarding pectin methylesterase activity, both chilies were consistent, regardless of the number of days of incubation. Still, putrescine and silver were significant contributors to variations in cv. Bullet and cv. Tejaswani. For the pigment content, lycopene and chlorophyll increased in a linear manner, although these treatments significantly varied over time. Hydrogen peroxide and putrescine were responsible for the maximum accumulation of lycopene for both the cultivars, whereas, only cv. Tejaswani displayed maximum carotenoid for putrescine. Silver for both chili varieties was the most inhibitory for lycopene and carotenoid content. Superoxide had a good impact on the accumulation of lipid peroxides, irrespective of the chili variety. The maximum accumulation of lipid peroxide was recorded at seven days of treatment. Phenolics and flavonoids were in decreasing order for both the chili varieties, progressing through the days of the study period in a similar manner. Silver was the main contributor to variations in the phenolics and flavonoid contents in cv. Tejaswani. The solubilization of total carbohydrate into reducing sugar was in an inverse relationship, with the maximum values being reached at 7 days of ripening.

13.
Ecotoxicol Environ Saf ; 183: 109600, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31509927

RESUMO

Involvement of abscisic acid (ABA) was studied for aluminium (Al) sensitivity through functioning of sub1A quantitative trait loci in rice cultivars. sub1A quantitative trait loci bearing cv. Swarna Sub1 was found almost compatible with non sub1A quantitative trait loci bearing cv. Swarna for abscisic acid accumulation all through the aluminium concentrations. However, abscisic acid was self inductive by over expression of its biosynthetic gene in nine-cis-epoxycarotenoid dioxygenase 3 (NCED3) more in cv. Swarna than other. The effect of abscisic acid pretreatment was variable for specific leaf weight, leaf mass ratio and others for the cultivars. Bio-accumulation of aluminium had revealed the sensitivity of toxicity more in cv. Swarna than other. In connection to oxidative stress generation of reactive oxygen species was detected by both histochemical and in vitro assays through hematoxylin, Evans blue and schiff's reactions. Abscisic acid pretreatment had significantly reversed the effects of aluminium toxicity for reactive oxygen species generation. Regardless of varieties sensitivity of aluminium was more prone in shoot than root as detected by nitro blue tetrazolium and 3,3'-diaminobenzidine mediated signalling. Activity in metal chelation in extra cellular spaces monitored through esterase activity and that also established independence of abscisic acid pretreatment for cv. Swarna Sub1. The specific polymorphism of esterase at protein level strengthened the bio-monitoring of aluminium through the rice varieties as well its modulation with abscisic acid. Abscisic acid has been discussed an important effectors to modulate the tolerance pathway of rice cultivars through intrusion of sub1A quantitative trait loci.


Assuntos
Ácido Abscísico/metabolismo , Alumínio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/efeitos dos fármacos , Locos de Características Quantitativas , Oryza/genética , Oryza/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Mol Biol Rep ; 45(5): 663-673, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29872937

RESUMO

The present work is emphasised with the herbicidal tolerance of Azolla pinnata R.Br. and its modulation with TiO2 nano-particle. Both carbohydrate and nitrogen metabolism were effected with 2,4-D as herbicide and in few cases TiO2-NP had recovered few detrimental effects. From the nutrient status in Azolla it recorded the recovery of nitrogen as well as potassium by TiO2-NP but not in case of phosphorus. However, a conversion of nitrate to ammonium was more induced by TiO2-NP under herbicidal toxicity. Similar results were obtained for inter-conversion of amino acid-nitrate pool, but no changes with glutamine synthase activity with TiO2-NP. Initially, the effects of 2,4-D was monitored with changes of chlorophyll content but had not been recovered with nanoparticle. Photosynthetic reserves expressed as both total and reducing sugar were insensitive to TiO2-NP interference but activity of soluble and wall bound invertase was in reverse trend as compared to control. The 2,4-D mediated changes of redox and its oxidative stress was ameliorated in plants with over expressed ADH activity. As a whole the Azolla bio system with TiO2 supplementation may be useful in sustenance against 2,4-D toxicity through recovery of nitrogen metabolism. Thus, Azolla-TiO2-NP bio system would be realised to monitor the herbicidal toxicity in soil and its possible bioremediation.


Assuntos
Ácido 2,4-Diclorofenoxiacético/toxicidade , Gleiquênias/fisiologia , Titânio/metabolismo , Biodegradação Ambiental , Clorofila/metabolismo , Nanopartículas Metálicas , Nanopartículas , Nitrogênio/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Fotossíntese , Potássio/metabolismo , Poluentes Químicos da Água
15.
Physiol Mol Biol Plants ; 22(3): 371-380, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27729723

RESUMO

In the present experiment a pteridophytic species Azolla and an angiospermic species Vernonia were evaluated on the basis of cellular reactivity for herbicidal action through ongoing concentrations. Initially, both the species recorded a significant activity of IAA-oxidase as mark of IAA metabolism with herbicidal sensitivity. Still, Vernonia species were more affected on 2,4-D mediated auxin catabolism. The loss of auxin concentrations on the tissues by 2,4-D reaction was also reflected on growth parameters including relative growth rate and chlorophyll biosynthesis. In a dose dependent manner Vernonia plants were more affected with loss of chlorophyll content and decline in relative growth rate. On the other hand, both those parameters were adjusted significantly with 2,4-D accumulation in Azolla. The stability of cellular metabolism was documented by significant down regulation of protein and lipid peroxidation with concomitant moderation to superoxide and hydrogen peroxide accumulation. The later two were more vulnerable to damage in the Vernonia plant with profuse accumulation of protein and lipid peroxidation products. Similarly, tissue specific reaction to superoxide and hydrogen peroxide accumulation were distinctly demarcated in two species significantly. As a whole, the cellular responses and metabolite distribution to 2,4-D sensitization are the features to describe bio-indices for aquatic fern species Azolla with comparison to angiospermic species Vernonia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA