Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; : e202400400, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779709

RESUMO

Sequence-independent detection of low concentrations of nucleic acids is important for applications in forensics and diagnostics. An emission-based probe for detecting and quantifying DNA and RNA utilizing a water-soluble dicationic tetraphenylethene (TPE) derivative was developed. The recognition is based on the electrostatic and other non-covalent interactions between the phosphate backbone of nucleic acids and the cationic probe, which cause the restriction of rotation of the aryl units of the probe, ensuing in the enhancement of the fluorescence signal. The binding was validated by different spectroscopic techniques and also by electrophoretic mobility shift assay. The probable mode of binding with the nucleic acids was studied by blind-docking studies that correlated well with the experimental results.

2.
ACS Omega ; 7(40): 35361-35370, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36249396

RESUMO

Enzyme mimics emulate the catalytic activities of their natural counterparts. Light-responsive enzyme mimics are an emerging branch of biomimetic chemistry where the catalytic activities can be controlled reversibly by light. These light-responsive systems are constructed by incorporating a suitable photoswitchable unit around the active-site mimic. As these systems are addressable by light, they do not leave back any undesired side products, and their activation-deactivation can be easily controlled. Naturally, these systems have enormous potential in the field of on-demand catalysis. The synthetic light-responsive enzyme mimics are robust and stable under harsh conditions. They do not require special handling protocols like those for real enzymes and can be tailor-made for improved solubility in a variety of solvents. How the introduction of the light-responsive systems has offered a new-edge to the field of small-molecule enzyme mimic has been elaborated in this Mini-review. Recent breakthroughs in light-responsive enzyme-like systems have been highlighted. Finally, the current obstacles and future prospects of this field have been discussed.

3.
Chem Asian J ; 16(21): 3481-3486, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34487427

RESUMO

Photosynthesis involves light-harvesting complexes where an array of antenna pigment channels the absorbed solar energy to the reaction centre of a photosystem. This work reports a supramolecular dendrimer-dye assembly that mimics the natural light-harvesting mechanism. A dendrimeric molecule based on two-fluorophores has been constructed with three coumarin units at the end of three long arms and a 7-diethylaminocoumarin unit at the interior. The molecule self-aggregates in water into spherical micelles, which can encapsulate a rose-bengal dye (RB). On excitation, peripheral coumarin units shuttled the energy to the loaded RB dye reaction center via a two-step cascade resonance energy transfer (RET). The energy absorbed in the periphery is funnelled efficiently, resulting in a strong emission from the dye that resembles an energy funnel. The energy transfer cascade has been studied with both steady-state and time-resolved fluorescence spectroscopy. Molecular dynamics simulations of the self-assembled aggregates in water were also in agreement with the experimental observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA