Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(13): 15085-15100, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585073

RESUMO

Proteinoids, or thermal proteins, are amino acid polymers formed at high temperatures by nonbiological processes. The objective of this study is to examine the memfractance characteristics of proteinoids within a supersaturated hydroxyapatite solution. The ionic solution utilized for the current-voltage (I-V) measurements possessed an ionic strength of 0.15 mol/L, a temperature of 37 °C, and a pH value of 7.4. The I-V curves exhibited distinct spikes, which are hypothesized to arise from the capacitive charging and discharging of the proteinoid-hydroxyapatite media. The experimental results demonstrated a positive correlation between the concentration of proteinoids and the observed number of spikes in the I-V curves. This observation provides evidence in favor of the hypothesis that the spikes originate from the proteinoids' capacitive characteristics. The memfractance behavior exemplifies the capacity of proteinoids to retain electrical charge within the hydrated hydroxyapatite media. Additional investigation is required in order to comprehensively identify the memcapacitive phenomena and delve into their implications for models of protocellular membranes. In a nutshell, this study provides empirical support for the existence of capacitive membrane-memfractance mechanisms in ensembles of proteinoids.

2.
Biochem Biophys Res Commun ; 709: 149725, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38579617

RESUMO

Proteinoids are synthetic polymers that have structural similarities to natural proteins, and their formation is achieved through the application of heat to amino acid combinations in a dehydrated environment. The thermal proteins, initially synthesised by Sidney Fox during the 1960s, has the ability to undergo self-assembly, resulting in the formation of microspheres that resemble cells. These microspheres have fascinating biomimetic characteristics. In recent studies, substantial advancements have been made in elucidating the electrical signalling phenomena shown by proteinoids, hence showcasing their promising prospects in the field of neuro-inspired computing. This study demonstrates the advancement of experimental prototypes that employ proteinoids in the construction of fundamental neural network structures. The article provides an overview of significant achievements in proteinoid systems, such as the demonstration of electrical excitability, emulation of synaptic functions, capabilities in pattern recognition, and adaptability of network structures. This study examines the similarities and differences between proteinoid networks and spontaneous neural computation. We examine the persistent challenges associated with deciphering the underlying mechanisms of emergent proteinoid-based intelligence. Additionally, we explore the potential for developing bio-inspired computing systems using synthetic thermal proteins in forthcoming times. The results of this study offer a theoretical foundation for the advancement of adaptive, self-assembling electronic systems that operate using artificial bio-neural principles.


Assuntos
Aminoácidos , Proteínas , Proteínas/metabolismo , Temperatura Alta , Redes Neurais de Computação
3.
Biosystems ; 237: 105175, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460836

RESUMO

Proteinoid-neuron networks combine biological neurons with spiking proteinoid microspheres, which are generated by thermal condensation of amino acids. Complex and dynamic spiking patterns in response to varied stimuli make these networks suitable for unconventional computing. This research examines the interaction of proteinoid-neuron networks with function-generator-artificial neural networks (ANN) that may create distinct electrical waveforms. Function-generator- artificial neural network (ANN) stimulates and modulates proteinoid-neuron network spiking activity and synchronisation to encode and decode information. We employ function-generator-ANN to study proteinoid-neuron network nonlinear dynamics and chaos and optimise their performance and energy efficiency. Function-generator-ANN improves proteinoid-neuron networks' computational capacities and robustness and creates unique hybrid systems with electrical devices. We address the benefits as well as the drawbacks of employing proteinoid-neuron networks for unconventional computing with function-generator-ANN.


Assuntos
Aminoácidos , Proteínas , Proteínas/metabolismo , Redes Neurais de Computação , Neurônios/metabolismo
4.
Mater Today Bio ; 25: 100989, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38384791

RESUMO

Proteinoids are artificial polymers that imitate certain characteristics of natural proteins, including self-organization, catalytic activity, and responsiveness to external stimuli. This paper examines the acoustic response properties of proteinoids microspheres when exposed to auditory stimuli. We convert sounds of English alphabet into waveforms of electrical potential, feed the waveforms into proteinoid solutions and record electrical responses of the proteinoids. We also undertake a detailed comparison of proteinoids' electrical responses (frequencies, periods, and amplitudes) with original input signals. We found that responses of proteinoids are less regular, lower dominant frequency, wider distribution of proteinoids and less skewed distribution of amplitudes compared with input signals. We found that resonant acoustic excitation of proteinoids generates unique electrical impulse patterns dependent on sound frequency and amplitude. The finding will be used in further designs of organic electronic devices, based on ensembles of proteinoids, for sound processing and speech recognition. Our findings provide the first quantitative investigation into the potential of thermal proteinoid microspheres for bio-inspired sound processing and recognition applications. Using controlled speaker excitation on proteinoid samples, we create reliable markers of productive acoustic response capacities, paving the way for future advancement.

5.
Biosystems ; 235: 105106, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128872

RESUMO

Advancements in mycelium technology, stemming from fungal electronics and the development of living mycelium composites and skins, have opened new avenues in the fusion of biological and artificial systems. This paper explores an experimental endeavour that successfully incorporates living, self-regenerating, and reactive Ganoderma sessile mycelium into a model cyborg figure, creating a bio-cybernetic entity. The mycelium, cultivated using established techniques, was homogeneously grown on the cyborg model's surface, demonstrating robust reactivity to various stimuli such as light exposure and touch. This innovative merger points towards the future of sustainable biomaterials and the potential integration of these materials into new and existing technologies.


Assuntos
Robótica , Materiais Biocompatíveis , Eletrônica
7.
ACS Omega ; 8(38): 35417-35426, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37780014

RESUMO

Proteinoids, also known as thermal proteins, possess a fascinating ability to generate microspheres that exhibit electrical spikes resembling the action potentials of neurons. These spiking microspheres, referred to as protoneurons, hold the potential to assemble into proto-nanobrains. In our study, we investigate the feasibility of utilizing a promising electrochemical technique called differential pulse voltammetry (DPV) to interface with proteinoid nanobrains. We evaluate DPV's suitability by examining critical parameters such as selectivity, sensitivity, and linearity of the electrochemical responses. The research systematically explores the influence of various operational factors, including pulse width, pulse amplitude, scan rate, and scan time. Encouragingly, our findings indicate that DPV exhibits significant potential as an efficient electrochemical interface for proteinoid nanobrains. This technology opens up new avenues for developing artificial neural networks with broad applications across diverse fields of research.

8.
R Soc Open Sci ; 10(10): 230936, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37830018

RESUMO

Proteinoids are thermal proteins which form microspheres in water in the presence of salt. Ensembles of proteinoid microspheres exhibit passive nonlinear electrical properties and active neuron-like spiking of electrical potential. We propose that various neuromorphic computing architectures can be prototyped from the proteinoid microspheres. A key feature of a neuromorphic system is a learning. Through the use of optical and resistance measurements, we study mechanisms of learning in ensembles of proteinoid microspheres. We analyse 16 types of proteinoids study and their intrinsic morphology and electrical properties. We demonstrate that proteinoids can learn, memorize and habituate, making them a promising candidate for novel computing.

9.
PLoS One ; 18(9): e0289433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37721941

RESUMO

Proteinoids are thermal proteins which swell into microspheres in aqueous solution. Ensembles of proteinoids produce electrical spiking activity similar to that of neurons. We introduce a novel method for implementing logical gates in the ensembles of proteinoid microspheres using chronoamperometry. Chronoamperometry is a technique that involves applying a voltage pulse to proteinoid microspheres and measuring their current response. We have observed that proteinoids exhibit distinct current patterns that align with various logical outputs. We identify four types of logical gates: AND, OR, XOR, and NAND. These gates are determined by the current response of proteinoid microspheres. Additionally, we demonstrate that proteinoid microspheres have the ability to modify their current response over time, which is influenced by their previous exposure to voltage. This indicates that they possess a capacity for learning and are capable of adapting to their environment. Our research showcases the ability of proteinoid microspheres to perform logical operations and computations through their inherent electrical properties.


Assuntos
Aprendizagem , Neurônios , Microesferas , Frequência Cardíaca
10.
Biosystems ; 232: 105015, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37657746

RESUMO

Proteinoids, or thermal proteins, are produced by heating amino acids to their melting point and initiating polymerisation to produce polymeric chains. In aqueous solutions proteinoids swell into hollow microspheres. These microspheres produce endogenous burst of electrical potential spikes and change patterns of their electrical activity in response to illumination. We report results on a detailed investigation on the effects of white cold light on the spiking of proteinoids. We study how different types and intensities of light determine proteinoids' spiking amplitude, period, and pattern. The results of this study will be utilised to evaluate proteinoids for their potential as optical sensors and their application in unconventional computing.


Assuntos
Aminoácidos , Luz , Microesferas , Polimerização
11.
Sci Rep ; 13(1): 12808, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550360

RESUMO

Growing colonies of the split-gill fungus Schizophyllum commune show action potential-like spikes of extracellular electrical potential. We analysed several days of electrical activity recording of the fungus and discovered three families of oscillatory patterns. Very slow activity at a scale of hours, slow activity at a scale of 10 min and very fast activity at scale of half-minute. We simulated the spiking behaviour using FitzHugh-Nagume model, uncovered mechanisms of spike shaping. We speculated that spikes of electrical potential might be associated with transportation of nutrients and metabolites.


Assuntos
Fenômenos Eletromagnéticos , Schizophyllum , Schizophyllum/fisiologia
12.
Ultrasonics ; 135: 107111, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37598499

RESUMO

Many organisms (including certain plant species) can be observed to emit sounds, potentially signifying threat alerts. Sensitivity to such sounds and vibrations may also play an important role in the lives of fungi. In this work, we explore the potential of ultrasound activity in dehydrating fungi, and discover that several species of fungi do not emit sounds (detectable with conventional instrumentation) in the frequency range of 10kHz to 210kHz upon dehydration. Over 5 terabytes of ultrasound recordings were collected and analysed. We conjecture that fungi interact via non-sound means, such as electrical or chemical.


Assuntos
Som , Vibração , Fungos , Ultrassonografia
14.
Sci Rep ; 13(1): 9367, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296164

RESUMO

A kombucha is a tea and sugar fermented by over sixty kinds of yeasts and bacteria. This symbiotic community produces kombucha mats, which are cellulose-based hydrogels. The kombucha mats can be used as an alternative to animal leather in industry and fashion once they have been dried and cured. Prior to this study, we demonstrated that living kombucha mats display dynamic electrical activity and distinct stimulating responses. For use in organic textiles, cured mats of kombucha are inert. To make kombucha wearables functional, it is necessary to incorporate electrical circuits. We demonstrate that creating electrical conductors on kombucha mats is possible. After repeated bending and stretching, the circuits maintain their functionality. In addition, the abilities and electronic properties of the proposed kombucha, such as being lighter, less expensive, and more flexible than conventional electronic systems, pave the way for their use in a diverse range of applications.


Assuntos
Bactérias , Leveduras , Animais , Fermentação , Chá/microbiologia
15.
Biosystems ; 229: 104933, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37257553

RESUMO

Living fungal mycelium networks are proven to have properties of memristors, capacitors and various sensors. To further progress our designs in fungal electronics we need to evaluate how electrical signals can be propagated through mycelium networks. We investigate the ability of mycelium-bound composites to convey electrical signals, thereby enabling the transmission of frequency-modulated information. Mycelium networks were found to reliably transfer signals with a recoverable frequency comparable to the input, in the 100Hz to 10 000Hz frequency range. Mycelial adaptive responses, such as tissue repair, may result in fragile connections, however. While the mean amplitude of output signals was not reproducible among replicate experiments exposed to the same input frequency, the variance across groups was highly consistent. Our work is supported by NARX modelling through which an approximate transfer function was derived. These findings advance the state of the art of using mycelium-bound composites in analogue electronics and unconventional computing.


Assuntos
Fungos , Micélio , Fungos/fisiologia
16.
Sci Rep ; 13(1): 8635, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244978

RESUMO

Oscillation of physical parameters in materials can result in a peak signal in the frequency spectrum of the voltage measured from the materials. This spectrum and its amplitude/frequency tunability, through the application of bias voltage or current, can be used to perform neuron-like cognitive tasks. Magnetic materials, after achieving broad distribution for data storage applications in classical Von Neumann computer architectures, are under intense investigation for their neuromorphic computing capabilities. A recent successful demonstration regards magnetisation oscillation in magnetic thin films by spin transfer or spin orbit torques accompanied by magnetoresistance (MR) effect that can give a voltage peak in the frequency spectrum of voltage with bias current dependence of both peak frequency and amplitude. Here we use classical magnetoimpedance (MI) effect in a magnetic wire to produce such a peak and manipulate its frequency and amplitude by means of the bias voltage. We applied a noise signal to a magnetic wire with high magnetic permeability and owing to the frequency dependence of the magnetic permeability we got frequency dependent impedance with a peak at the maximum permeability. Frequency dependence of the MI effect results in different changes in the voltage amplitude at each frequency when a bias voltage is applied and therefore a shift in the peak position and amplitude can be obtained. The presented method and material provide optimal features in structural simplicity, low-frequency operation (tens of MHz-order) and high robustness at different environmental conditions. Our universal approach can be applied to any system with frequency dependent bias responses.

17.
Biosystems ; 227-228: 104892, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37076037

RESUMO

Proteinoids, or thermal proteins, are inorganic entities formed by heating amino acids to their melting point and commencing polymerisation to form polymeric chains. Typically, their diameters range from 1µm to 10µm. Some amino acids incorporated into proteinoid chains are more hydrophobic than others, leading proteinoids to cluster together when they are present in aqueous solutions at specific concentrations, allowing them to grow into microspheres. The peculiar structure of proteinoids composed of linked amino acids endows them with unique properties, including action-potential like spiking of electrical potential. These unique properties make ensembles of proteinoid microspheres a promising substrate for designing future artificial brains and unconventional computing devices. To evaluate a potential of proteinoid microspheres for unconventional electronic devices we measure and analyse the data-transfer capacities of proteinoid microspheres. In experimental laboratory conditions we demonstrate that the transfer function of proteinoids microspheres is a nontrivial phenomenon, which might be due to the wide range of proteinoid shapes, sizes, and structures.


Assuntos
Aminoácidos , Proteínas , Microesferas , Proteínas/metabolismo
18.
Fungal Biol Biotechnol ; 10(1): 8, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013653

RESUMO

Mycelium-bound composites are potential alternatives to conventional materials for a variety of applications, including thermal and acoustic building panels and product packaging. If the reactions of live mycelium to environmental conditions and stimuli are taken into account, it is possible to create functioning fungal materials. Thus, active building components, sensory wearables, etc. might be created. This research describes the electrical sensitivity of fungus to changes in the moisture content of a mycelium-bound composite. Trains of electrical spikes initiate spontaneously in fresh mycelium-bound composites with a moisture content between [Formula: see text] 95% and [Formula: see text] 65%, and between [Formula: see text] 15% and [Formula: see text] 5% when partially dried. When the surfaces of mycelium-bound composites were partially or totally encased with an impermeable layer, increased electrical activity was observed. In fresh mycelium-bound composites, electrical spikes were seen both spontaneously and when induced by water droplets on the surface. Also explored is the link between electrical activity and electrode depth. Future designs of smart buildings, wearables, fungi-based sensors, and unconventional computer systems may benefit from fungi configurations and biofabrication flexibility.

19.
Biomimetics (Basel) ; 8(1)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36975352

RESUMO

The in situ measurement of the bioelectric potential in xilematic and floematic superior plants reveals valuable insights into the biological activity of these organisms, including their responses to lunar and solar cycles and collective behaviour. This paper reports on the "Cyberforest Experiment" conducted in the open-air Paneveggio forest in Valle di Fiemme, Trento, Italy, where spruce (i.e., Picea abies) is cultivated. Our analysis of the bioelectric potentials reveals a strong correlation between higher-order complexity measurements and thermodynamic entropy and suggests that bioelectrical signals can reflect the metabolic activity of plants. Additionally, temporal correlations of bioelectric signals from different trees may be precisely synchronized or may lag behind. These correlations are further explored through the lens of quantum field theory, suggesting that the forest can be viewed as a collective array of in-phase elements whose correlation is naturally tuned depending on the environmental conditions. These results provide compelling evidence for the potential of living plant ecosystems as environmental sensors.

20.
Adv Mater ; 35(23): e2211406, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919899

RESUMO

Magnetic fluids are excellent candidates for several important research fields including energy harvesting, biomedical applications, soft robotics, and exploration. However, notwithstanding relevant advancements such as shape reconfigurability, that have been demonstrated, there is no evidence for their computing capability, including the emulation of synaptic functions, which requires complex non-linear dynamics. Here, it is experimentally demonstrated that a Fe3 O4 water-based ferrofluid (FF) can perform electrical analogue computing and be programmed using quasi direct current (DC) signals and read at radio frequency (RF) mode. Features have been observed in all respects attributable to a memristive behavior, featuring both short and long-term information storage capacity and plasticity. The colloid is capable of classifying digits of a 8 × 8 pixel dataset using a custom in-memory signal processing scheme, and through physical reservoir computing by training a readout layer. These findings demonstrate the feasibility of in-memory computing using an amorphous FF system in a liquid aggregation state. This work poses the basis for the exploitation of a FF colloid as both an in-memory computing device and as a full-electric liquid computer thanks to its fluidity and the reported complex dynamics, via probing read-out and programming ports.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA