Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Conserv Biol ; : e14286, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708866

RESUMO

Driven by the United Nations Decade on Restoration and international funding initiatives, such as the Mangrove Breakthrough, investment in mangrove restoration is expected to increase. Yet, mangrove restoration efforts frequently fail, usually because of ad hoc site-selection processes that do not consider mangrove ecology and the socioeconomic context. Using decision analysis, we developed an approach that accounts for socioeconomic and ecological data to identify sites with the highest likelihood of mangrove restoration success. We applied our approach in the Biosphere Reserve Marismas Nacionales Nayarit, Mexico, an area that recently received funding for implementing mangrove restoration actions. We identified 468 potential restoration sites, assessed their restorability potential based on socioeconomic and ecological metrics, and ranked sites for implementation with spatial optimization. The metrics we used included favorable conditions for propagules to establish and survive under sea-level rise, provision of ecosystem services, and community dynamics. Sites that were selected based on socioeconomic or ecological metrics alone had lower likelihood of mangrove restoration success than sites that were selected based on integrated socioeconomic and ecological metrics. For example, selecting sites based on only socioeconomic metrics captured 16% of the maximum attainable value of functioning mangroves able to provide propagules to potential restoration sites, whereas selecting sites based on ecological and socioeconomic metrics captured 46% of functioning mangroves. Our approach was developed as part of a collaboration between nongovernmental organizations, local government, and academics under rapid delivery time lines given preexisting mangrove restoration implementation commitments. The systematic decision process we used integrated socioeconomic and ecological considerations even under short delivery deadlines, and our approach can be adapted to help mangrove restoration site-selection decisions elsewhere.


Integración de datos socioeconómicos y ecológicos en las prácticas de restauración Resumen Se espera que la inversión en la restauración de los manglares incremente debido a la Década de Restauración de las Naciones Unidad y las iniciativas internacionales de financiamiento, como The Mangrove Breakthrough. Sin embargo, los esfuerzos de restauración de manglares fallan con frecuencia, generalmente por los procesos de selección de sitios ad­hoc que no consideran la ecología del manglar y el contexto socioeconómico. Usamos el análisis de decisiones para desarrollar una estrategia que considera los datos socioeconómicos y ecológicos para identificar los sitios con mayor probabilidad de éxito de restauración. Aplicamos nuestra estrategia en la Reserva de la Biósfera Marismas Nacionales Nayarit, México, un área que recibió financiamiento reciente para la restauración del manglar. Identificamos 468 sitios potencialmente restaurables, evaluamos su potencial de restauración con base en medidas ecológicas y socioeconómicas y clasificamos los sitios para la implementación con la optimización espacial. Las medidas que usamos incluían las condiciones favorables para que los propágulos se establezcan y sobrevivan con el incremento en el nivel del mar, el suministro de servicios ambientales y las dinámicas de la comunidad. Los sitios seleccionados sólo con base en las medidas ecológicas o socioeconómicas tuvieron una menor probabilidad de éxito de restauración que los sitios que se seleccionaron con base en medidas socioeconómicas y ecológicas integradas. Por ejemplo, la selección de sitios con base sólo en las medidas socioeconómicas capturó el 16% del máximo valor alcanzable de manglares funcionales capaces de proporcionar propágulos a los sitios potenciales de restauración, mientras que la selección basada en medidas ecológicas y socioeconómicas capturó el 46% de los manglares funcionales. Desarrollamos nuestra estrategia como parte de una colaboración entre organizaciones no gubernamentales, el gobierno local y académicos sujetos a una fecha pronta de entrega debido a los compromisos preexistentes para la restauración de manglares. El proceso de decisión sistemática que usamos integró las consideraciones ecológicas y socioeconómicas incluso con plazos cortos de entrega. Nuestra estrategia puede adaptarse para apoyar en la selección de sitios de restauración de manglares en otros sitios.

2.
Sci Total Environ ; 904: 166357, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595913

RESUMO

Mangrove forests support unique biodiversity and provide a suite of ecosystem services (ES) that benefit people. Decades of continual mangrove loss and degradation have necessitated global efforts to protect and restore this important ecosystem. Generating and evaluating asset maps of biodiversity and ES is an important precursor to identifying locations that can deliver conservation outcomes across varying scales, such as maximising the co-occurrence of specific ES. We bring together global datasets on mangrove-affiliated biodiversity, carbon stocks, fish and invertebrate production, and coastal protection to provide insight into potential trade-offs, synergies and opportunities from mangrove conservation. We map opportunities where high ES provision co-occurs with these areas that could be leveraged in conservation planning, and identify potential high-value opportunities for single ES that might otherwise be missed with a biodiversity focus. Hotspots of single ES, co-occurrence of multiple ES, and opportunities to simultaneously leverage biodiversity and ES occurred throughout the world. For example, efforts that focus on conserving or restoring mangroves to store carbon can be targed to deliver multiple ES benefits. Some nations, such as Vietnam, Oman, Ecuador and China, showed consistent (although not necessarily strong) correlations between ES pairs. A lack of clear or consistent spatial trends elsewhere suggests that some nations will likely benefit more from complementarity-based approaches that focus on multiple sites with high provision of different services. Individual sites within these nations, however, such as Laguna de Terminos in Mexico still provide valuable opportunities to leverage co-benefits. Ensuring that an ES focused approach is complemented by strategic spatial planning is a priority, and our analyses provide a precursor towards decisions about where and how to invest.


Assuntos
Carbono , Ecossistema , Humanos , Animais , Conservação dos Recursos Naturais , Biodiversidade , Invertebrados
3.
Ecol Appl ; 32(5): e2620, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35389535

RESUMO

Coastal wetland restoration is an important activity to achieve greenhouse gas (GHG) reduction targets, improve water quality, and reach the Sustainable Development Goals. However, many uncertainties remain in connection with achieving, measuring, and reporting success from coastal wetland restoration. We measured levels of carbon (C) abatement and nitrogen (N) removal potential of restored coastal wetlands in subtropical Queensland, Australia. The site was originally a supratidal forest composed of Melaleuca spp. that was cleared and drained in the 1990s for sugarcane production. In 2010, tidal inundation was reinstated, and a mosaic of coastal vegetation (saltmarshes, mangroves, and supratidal forests) emerged. We measured soil GHG fluxes (CH4 , N2 O, CO2 ) and sequestration of organic C in the trees and soil to estimate the net C abatement associated with the reference, converted, and restored sites. To assess the influence of restoration on water quality improvement, we measured denitrification and soil N accumulation. We calculated C abatement of 18.5 Mg CO2-eq ha-1 year-1 when sugarcane land transitioned to supratidal forests, 11.0 Mg CO2-eq ha-1 year-1 when the land transitioned to mangroves, and 6.2 Mg CO2-eq ha-1 year-1 when the land transitioned to saltmarshes. The C abatement was due to tree growth, soil accumulation, and reduced N2 O emissions due to the cessation of fertilization. Carbon abatement was still positive, even accounting for CH4 emissions, which increased in the wetlands due to flooding and N2 O production due to enhanced levels of denitrification. Coastal wetland restoration in this subtropical setting effectively reduces CO2 emissions while providing additional cobenefits, notably water quality improvement.


Assuntos
Gases de Efeito Estufa , Áreas Alagadas , Carbono , Dióxido de Carbono/análise , Mudança Climática , Metano/análise , Óxido Nitroso/análise , Solo , Qualidade da Água
4.
Curr Biol ; 32(7): 1641-1649.e3, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35196506

RESUMO

There is an urgent need to halt and reverse loss of mangroves and seagrass to protect and increase the ecosystem services they provide to coastal communities, such as enhancing coastal resilience and contributing to climate stability.1,2 Ambitious targets for their recovery can inspire public and private investment in conservation,3 but the expected outcomes of different protection and restoration strategies are unclear. We estimated potential recovery of mangroves and seagrass through gains in ecosystem extent to the year 2070 under a range of protection and restoration strategies implemented until the year 2050. Under a protection-only scenario, the current trajectories of net mangrove loss slowed, and a minor net gain in global seagrass extent (∼1%) was estimated. Protection alone is therefore unlikely to drive sufficient recovery. However, if action is taken to both protect and restore, net gains of up to 5% and 35% of mangroves and seagrasses, respectively, could be achieved by 2050. Further, protection and restoration can be complementary, as protection prevents losses that would otherwise occur post-2050, highlighting the importance of implementing protection measures. Our findings provide the scientific evidence required for setting strategic and ambitious targets to inspire significant global investment and effort in mangrove and seagrass conservation.


Assuntos
Ecossistema , Áreas Alagadas , Clima , Conservação dos Recursos Naturais
5.
Glob Chang Biol ; 27(14): 3257-3271, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864332

RESUMO

Australia's Great Barrier Reef (GBR) catchments include some of the world's most intact coastal wetlands comprising diverse mangrove, seagrass and tidal marsh ecosystems. Although these ecosystems are highly efficient at storing carbon in marine sediments, their soil organic carbon (SOC) stocks and the potential changes resulting from climate impacts, including sea level rise are not well understood. For the first time, we estimated SOC stocks and their drivers within the range of coastal wetlands of GBR catchments using boosted regression trees (i.e. a machine learning approach and ensemble method for modelling the relationship between response and explanatory variables) and identified the potential changes in future stocks due to sea level rise. We found levels of SOC stocks of mangrove and seagrass meadows have different drivers, with climatic variables such as temperature, rainfall and solar radiation, showing significant contributions in accounting for variation in SOC stocks in mangroves. In contrast, soil type accounted for most of the variability in seagrass meadows. Total SOC stock in the GBR catchments, including mangroves, seagrass meadows and tidal marshes, is approximately 137 Tg C, which represents 9%-13% of Australia's total SOC stock while encompassing only 4%-6% of the total extent of Australian coastal wetlands. In a global context, this could represent 0.5%-1.4% of global SOC stock. Our study suggests that landward migration due to projected sea level rise has the potential to enhance carbon accumulation with total carbon gains between 0.16 and 0.46 Tg C and provides an opportunity for future restoration to enhance blue carbon.


Assuntos
Carbono , Áreas Alagadas , Austrália , Carbono/análise , Sequestro de Carbono , Ecossistema , Solo
6.
Glob Chang Biol ; 27(12): 2856-2866, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33644947

RESUMO

Mangroves have among the highest carbon densities of any tropical forest. These 'blue carbon' ecosystems can store large amounts of carbon for long periods, and their protection reduces greenhouse gas emissions and supports climate change mitigation. Incorporating mangroves into Nationally Determined Contributions to the Paris Agreement and their valuation on carbon markets requires predicting how the management of different land-uses can prevent future greenhouse gas emissions and increase CO2 sequestration. We integrated comprehensive global datasets for carbon stocks, mangrove distribution, deforestation rates, and land-use change drivers into a predictive model of mangrove carbon emissions. We project emissions and foregone soil carbon sequestration potential under 'business as usual' rates of mangrove loss. Emissions from mangrove loss could reach 2391 Tg CO2 eq by the end of the century, or 3392 Tg CO2 eq when considering foregone soil carbon sequestration. The highest emissions were predicted in southeast and south Asia (West Coral Triangle, Sunda Shelf, and the Bay of Bengal) due to conversion to aquaculture or agriculture, followed by the Caribbean (Tropical Northwest Atlantic) due to clearing and erosion, and the Andaman coast (West Myanmar) and north Brazil due to erosion. Together, these six regions accounted for 90% of the total potential CO2 eq future emissions. Mangrove loss has been slowing, and global emissions could be more than halved if reduced loss rates remain in the future. Notably, the location of global emission hotspots was consistent with every dataset used to calculate deforestation rates or with alternative assumptions about carbon storage and emissions. Our results indicate the regions in need of policy actions to address emissions arising from mangrove loss and the drivers that could be managed to prevent them.


Assuntos
Carbono , Áreas Alagadas , Ásia , Brasil , Sequestro de Carbono , Região do Caribe , Ecossistema , Paris
7.
Photosynth Res ; 129(2): 159-70, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27259536

RESUMO

In order to understand plant responses to both the widespread phenomenon of increased nutrient inputs to coastal zones and the concurrent rise in atmospheric CO2 concentrations, CO2-nutrient interactions need to be considered. In addition to its potential stimulating effect on photosynthesis and growth, elevated CO2 affects the temperature response of photosynthesis. The scarcity of experiments testing how elevated CO2 affects the temperature response of tropical trees hinders our ability to model future primary productivity. In a glasshouse study, we examined the effects of elevated CO2 (800 ppm) and nutrient availability on seedlings of the widespread mangrove Avicennia germinans. We assessed photosynthetic performance, the temperature response of photosynthesis, seedling growth and biomass allocation. We found large synergistic gains in both growth (42 %) and photosynthesis (115 %) when seedlings grown under elevated CO2 were supplied with elevated nutrient concentrations relative to their ambient growing conditions. Growth was significantly enhanced under elevated CO2 only under high-nutrient conditions, mainly in above-ground tissues. Under low-nutrient conditions and elevated CO2, root volume was more than double that of seedlings grown under ambient CO2 levels. Elevated CO2 significantly increased the temperature optimum for photosynthesis by ca. 4 °C. Rising CO2 concentrations are likely to have a significant positive effect on the growth rate of A. germinans over the next century, especially in areas where nutrient availability is high.


Assuntos
Avicennia/efeitos dos fármacos , Dióxido de Carbono/farmacologia , Avicennia/crescimento & desenvolvimento , Avicennia/fisiologia , Biomassa , Nitrogênio/metabolismo , Fósforo/metabolismo , Fotossíntese , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Transpiração Vegetal , Ribulose-Bifosfato Carboxilase/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Solo/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA