Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 52(5): 970-983, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30977983

RESUMO

BACKGROUND/AIMS: Regulation of mRNA translation is central to protein homeostasis and is optimized for speed and accuracy. Spontaneous recoding events occur virtually at any codon but at very low frequency and are commonly assumed to increase as the cell ages. METHODS: Here, we leveraged the polyglutamine(polyQ)-frameshifting model of huntingtin exon 1 with CAG repeat length in the pathological range (Htt51Q), which undergoes enhanced non-programmed translational -1 frameshifting. RESULTS: In body muscle cells of Caenorhabditis elegans, -1 frameshifting occured at the onset of expression of the zero-frame product, correlated with mRNA level of the non-frameshifted expression and formed aggregates correlated with reduced motility in C. elegans. Spontaneous frameshifting was modulated by IFG-1, the homologue of the nutrient-responsive eukaryotic initiation factor 4G (eIF4G), under normal growth conditions and NSUN-5, a conserved ribosomal RNA methyltransferase, under osmotic stress. CONCLUSION: Our results suggest that frameshifting and aggregation occur at even early stages of development and, because of their intrinsic stability, may persist and accelerate the onset of age-related proteinopathies.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mutação da Fase de Leitura , Proteína Huntingtina , Doença de Huntington , Expansão das Repetições de Trinucleotídeos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Éxons , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo
2.
J Biol Chem ; 291(35): 18505-13, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27382061

RESUMO

Maintenance of triplet decoding is crucial for the expression of functional protein because deviations either into the -1 or +1 reading frames are often non-functional. We report here that expression of huntingtin (Htt) exon 1 with expanded CAG repeats, implicated in Huntington pathology, undergoes a sporadic +1 frameshift to generate from the CAG repeat a trans-frame AGC repeat-encoded product. This +1 recoding is exclusively detected in pathological Htt variants, i.e. those with expanded repeats with more than 35 consecutive CAG codons. An atypical +1 shift site, UUC C at the 5' end of CAG repeats, which has some resemblance to the influenza A virus shift site, triggers the +1 frameshifting and is enhanced by the increased propensity of the expanded CAG repeats to form a stem-loop structure. The +1 trans-frame-encoded product can directly influence the aggregation of the parental Htt exon 1.


Assuntos
Éxons , Mutação da Fase de Leitura , Proteína Huntingtina , Expansão das Repetições de Trinucleotídeos , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Estrutura Secundária de Proteína
3.
Sci Rep ; 5: 10692, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26031360

RESUMO

Aging is a highly controlled biological process characterized by a progressive deterioration of various cellular activities. One of several hallmarks of aging describes a link to transcriptional alteration, suggesting that it may impact the steady-state mRNA levels. We analyzed the mRNA steady-state levels of polyCAG-encoding transgenes and endogenous genes under the control of well-characterized promoters for intestinal (vha-6), muscular (unc-54, unc-15) and pan-neuronal (rgef-1, unc-119) expression in the nematode Caenorhabditis elegans. We find that there is not a uniform change in transcriptional profile in aging, but rather a tissue-specific difference in the mRNA levels of these genes. While levels of mRNA in the intestine (vha-6) and muscular (unc-54, unc-15) cells decline with age, pan-neuronal tissue shows more stable mRNA expression (rgef-1, unc-119) which even slightly increases with the age of the animals. Our data on the variations in the mRNA abundance from exemplary cases of endogenous and transgenic gene expression contribute to the emerging evidence for tissue-specific variations in the aging process.


Assuntos
Envelhecimento/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , RNA Mensageiro/genética , Animais , Animais Geneticamente Modificados , Expressão Gênica , Mucosa Intestinal/metabolismo , Músculos/metabolismo , Neurônios/metabolismo , Especificidade de Órgãos/genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA