Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1887): 20220278, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37598701

RESUMO

In 2012, the World Health Organization (WHO) set the elimination of Chagas disease intradomiciliary vectorial transmission as a goal by 2020. After a decade, some progress has been made, but the new 2021-2030 WHO roadmap has set even more ambitious targets. Innovative and robust modelling methods are required to monitor progress towards these goals. We present a modelling pipeline using local seroprevalence data to obtain national disease burden estimates by disease stage. Firstly, local seroprevalence information is used to estimate spatio-temporal trends in the Force-of-Infection (FoI). FoI estimates are then used to predict such trends across larger and fine-scale geographical areas. Finally, predicted FoI values are used to estimate disease burden based on a disease progression model. Using Colombia as a case study, we estimated that the number of infected people would reach 506 000 (95% credible interval (CrI) = 395 000-648 000) in 2020 with a 1.0% (95%CrI = 0.8-1.3%) prevalence in the general population and 2400 (95%CrI = 1900-3400) deaths (approx. 0.5% of those infected). The interplay between a decrease in infection exposure (FoI and relative proportion of acute cases) was overcompensated by a large increase in population size and gradual population ageing, leading to an increase in the absolute number of Chagas disease cases over time. This article is part of the theme issue 'Challenges and opportunities in the fight against neglected tropical diseases: a decade from the London Declaration on NTDs'.


Assuntos
Envelhecimento , Doença de Chagas , Humanos , Estudos Soroepidemiológicos , Doença de Chagas/epidemiologia , Colômbia , Efeitos Psicossociais da Doença , Doenças Negligenciadas/epidemiologia
2.
PLoS Negl Trop Dis ; 16(7): e0010594, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35853042

RESUMO

BACKGROUND: Chagas disease is a long-lasting disease with a prolonged asymptomatic period. Cumulative indices of infection such as prevalence do not shed light on the current epidemiological situation, as they integrate infection over long periods. Instead, metrics such as the Force-of-Infection (FoI) provide information about the rate at which susceptible people become infected and permit sharper inference about temporal changes in infection rates. FoI is estimated by fitting (catalytic) models to available age-stratified serological (ground-truth) data. Predictive FoI modelling frameworks are then used to understand spatial and temporal trends indicative of heterogeneity in transmission and changes effected by control interventions. Ideally, these frameworks should be able to propagate uncertainty and handle spatiotemporal issues. METHODOLOGY/PRINCIPAL FINDINGS: We compare three methods in their ability to propagate uncertainty and provide reliable estimates of FoI for Chagas disease in Colombia as a case study: two Machine Learning (ML) methods (Boosted Regression Trees (BRT) and Random Forest (RF)), and a Linear Model (LM) framework that we had developed previously. Our analyses show consistent results between the three modelling methods under scrutiny. The predictors (explanatory variables) selected, as well as the location of the most uncertain FoI values, were coherent across frameworks. RF was faster than BRT and LM, and provided estimates with fewer extreme values when extrapolating to areas where no ground-truth data were available. However, BRT and RF were less efficient at propagating uncertainty. CONCLUSIONS/SIGNIFICANCE: The choice of FoI predictive models will depend on the objectives of the analysis. ML methods will help characterise the mean behaviour of the estimates, while LM will provide insight into the uncertainty surrounding such estimates. Our approach can be extended to the modelling of FoI patterns in other Chagas disease-endemic countries and to other infectious diseases for which serosurveys are regularly conducted for surveillance.


Assuntos
Doença de Chagas , Aprendizado de Máquina , Doença de Chagas/epidemiologia , Colômbia , Humanos , Modelos Lineares , Prevalência
3.
Soc Sci Med ; 241: 112448, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31481245

RESUMO

This paper scrutinizes the assertion that knowledge gaps concerning health risks from climate change are unjust, and must be addressed, because they hinder evidence-led interventions to protect vulnerable populations. First, we construct a taxonomy of six inter-related forms of invisibility (social marginalization, forced invisibility by migrants, spatial marginalization, neglected diseases, mental health, uneven climatic monitoring and forecasting) which underlie systematic biases in current understanding of these risks in Latin America, and advocate an approach to climate-health research that draws on intersectionality theory to address these inter-relations. We propose that these invisibilities should be understood as outcomes of structural imbalances in power and resources rather than as haphazard blindspots in scientific and state knowledge. Our thesis, drawing on theories of governmentality, is that context-dependent tensions condition whether or not benefits of making vulnerable populations legible to the state outweigh costs. To be seen is to be politically counted and eligible for rights, yet evidence demonstrates the perils of visibility to disempowered people. For example, flood-relief efforts in remote Amazonia expose marginalized urban river-dwellers to the traumatic prospect of forced relocation and social and economic upheaval. Finally, drawing on research on citizenship in post-colonial settings, we conceptualize climate change as an 'open moment' of political rupture, and propose strategies of social accountability, empowerment and trans-disciplinary research which encourage the marginalized to reach out for greater power. These achievements could reduce drawbacks of state legibility and facilitate socially-just governmental action on climate change adaptation that promotes health for all.


Assuntos
Mudança Climática , Acessibilidade aos Serviços de Saúde , Disparidades em Assistência à Saúde , Humanos , Serviços de Saúde Mental/provisão & distribuição , Doenças Negligenciadas , Alocação de Recursos , Determinantes Sociais da Saúde , Marginalização Social , Populações Vulneráveis
4.
Sci Total Environ ; 665: 1053-1063, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30893737

RESUMO

The benefits nature provides to people, called ecosystem services, are increasingly recognized and accounted for in assessments of infrastructure development, agricultural management, conservation prioritization, and sustainable sourcing. These assessments are often limited by data, however, a gap with tremendous potential to be filled through Earth observations (EO), which produce a variety of data across spatial and temporal extents and resolutions. Despite widespread recognition of this potential, in practice few ecosystem service studies use EO. Here, we identify challenges and opportunities to using EO in ecosystem service modeling and assessment. Some challenges are technical, related to data awareness, processing, and access. These challenges require systematic investment in model platforms and data management. Other challenges are more conceptual but still systemic; they are byproducts of the structure of existing ecosystem service models and addressing them requires scientific investment in solutions and tools applicable to a wide range of models and approaches. We also highlight new ways in which EO can be leveraged for ecosystem service assessments, identifying promising new areas of research. More widespread use of EO for ecosystem service assessment will only be achieved if all of these types of challenges are addressed. This will require non-traditional funding and partnering opportunities from private and public agencies to promote data exploration, sharing, and archiving. Investing in this integration will be reflected in better and more accurate ecosystem service assessments worldwide.

5.
Ann N Y Acad Sci ; 1400(1): 65-80, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28715602

RESUMO

Winter storms pose numerous hazards to the Northeast United States, including rain, snow, strong wind, and flooding. These hazards can cause millions of dollars in damages from one storm alone. This study investigates meteorological intensity and impacts of winter storms from 2001 to 2014 on coastal counties in Connecticut, New Jersey, and New York and underscores the consequences of winter storms. The study selected 70 winter storms on the basis of station observations of surface wind strength, heavy precipitation, high storm tide, and snow extremes. Storm rankings differed between measures, suggesting that intensity is not easily defined with a single metric. Several storms fell into two or more categories (multiple-category storms). Following storm selection, property damages were examined to determine which types lead to high losses. The analysis of hazards (or events) and associated damages using the Storm Events Database of the National Centers for Environmental Information indicates that multiple-category storms were responsible for a greater portion of the damage. Flooding was responsible for the highest losses, but no discernible connection exists between the number of storms that afflict a county and the damage it faces. These results imply that losses may rely more on the incidence of specific hazards, infrastructure types, and property values, which vary throughout the region.


Assuntos
Tempestades Ciclônicas , Planejamento em Desastres , Meio Ambiente , Inundações , Humanos , New York , Chuva , Estações do Ano
8.
Int J Public Health ; 57(5): 849-54, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22918518

RESUMO

OBJECTIVES: The Coronary Heart Disease (CHD) Policy Model-China, a national scale cardiovascular disease computer simulation model, was used to project future impact of urbanization. METHODS: Populations and cardiovascular disease incidence rates were stratified into four submodels: North-Urban, South-Urban, North-Rural, and South-Rural. 2010 was the base year, and high and low urbanization rate scenarios were used to project 2030 populations. RESULTS: Rural-to-urban migration, population growth, and aging were projected to more than double cardiovascular disease events in urban areas and increase events by 27.0-45.6% in rural areas. Urbanization is estimated to raise age-standardized coronary heart disease incidence by 73-81 per 100,000 and stroke incidence only slightly. CONCLUSIONS: Rural-to-urban migration will likely be a major demographic driver of the cardiovascular disease epidemic in China.


Assuntos
Doenças Cardiovasculares/epidemiologia , Dinâmica Populacional , População Rural/estatística & dados numéricos , População Urbana/estatística & dados numéricos , Urbanização , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Cardiovasculares/mortalidade , China/epidemiologia , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Taxa de Sobrevida
9.
Popul Health Metr ; 10(1): 8, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22591595

RESUMO

The use of Global Positioning Systems (GPS) and Geographical Information Systems (GIS) in disease surveys and reporting is becoming increasingly routine, enabling a better understanding of spatial epidemiology and the improvement of surveillance and control strategies. In turn, the greater availability of spatially referenced epidemiological data is driving the rapid expansion of disease mapping and spatial modeling methods, which are becoming increasingly detailed and sophisticated, with rigorous handling of uncertainties. This expansion has, however, not been matched by advancements in the development of spatial datasets of human population distribution that accompany disease maps or spatial models.Where risks are heterogeneous across population groups or space or dependent on transmission between individuals, spatial data on human population distributions and demographic structures are required to estimate infectious disease risks, burdens, and dynamics. The disease impact in terms of morbidity, mortality, and speed of spread varies substantially with demographic profiles, so that identifying the most exposed or affected populations becomes a key aspect of planning and targeting interventions. Subnational breakdowns of population counts by age and sex are routinely collected during national censuses and maintained in finer detail within microcensus data. Moreover, demographic and health surveys continue to collect representative and contemporary samples from clusters of communities in low-income countries where census data may be less detailed and not collected regularly. Together, these freely available datasets form a rich resource for quantifying and understanding the spatial variations in the sizes and distributions of those most at risk of disease in low income regions, yet at present, they remain unconnected data scattered across national statistical offices and websites.In this paper we discuss the deficiencies of existing spatial population datasets and their limitations on epidemiological analyses. We review sources of detailed, contemporary, freely available and relevant spatial demographic data focusing on low income regions where such data are often sparse and highlight the value of incorporating these through a set of examples of their application in disease studies. Moreover, the importance of acknowledging, measuring, and accounting for uncertainty in spatial demographic datasets is outlined. Finally, a strategy for building an open-access database of spatial demographic data that is tailored to epidemiological applications is put forward.

10.
s.l; CARE;United Nations University;Columbia University. CIESIN;The World Bank. Social Dimensions of Climate Change;UN. High Commisiones for Refugees; 2009. 26 p. ilus, mapas.
Monografia em Inglês | Desastres | ID: des-17415
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA