Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 250, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413616

RESUMO

Antimicrobial resistance (AMR) poses a severe threat to global health. The wide distribution of environmental antibiotic resistance genes (ARGs), which can be transferred between microbiota, especially clinical pathogens and human commensals, contributed significantly to AMR. However, few databases on the spatiotemporal distribution, abundance, and health risk of ARGs from multiple environments have been developed, especially on the absolute level. In this study, we compiled the ARG occurrence data generated by a high-throughput quantitative PCR platform from 1,403 samples in 653 sampling sites across 18 provinces in China. The database possessed 291,870 records from five types of habitats on the abundance of 290 ARGs, as well as 8,057 records on the abundance of 30 mobile genetic elements (MGEs) from 2013 to 2020. These ARGs conferred resistance to major common types of antibiotics (a total of 15 types) and represented five major resistance mechanisms, as well as four risk ranks. The database can provide information for studies on the dynamics of ARGs and is useful for the health risk assessment of AMR.


Assuntos
Antibacterianos , Bases de Dados Genéticas , Resistência Microbiana a Medicamentos , Microbiota , Antibacterianos/farmacologia , China , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
2.
Sci Rep ; 13(1): 10124, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349488

RESUMO

We present an approach (knowledge-and-data-driven, KDD, modeling) that allows us to get closer to understanding the processes that affect the dynamics of plankton communities. This approach, based on the use of time series obtained as a result of ecosystem monitoring, combines the key features of both the knowledge-driven modeling (mechanistic models) and data-driven (DD) modeling. Using a KDD model, we reveal the phytoplankton growth-rate fluctuations in the ecosystem of the Naroch Lakes and determine the degree of phase synchronization between fluctuations in the phytoplankton growth rate and temperature variations. More specifically, we estimate a numerical value of the phase locking index (PLI), which allows us to assess how temperature fluctuations affect the dynamics of phytoplankton growth rates. Since, within the framework of KDD modeling, we directly include the time series obtained as a result of field measurements in the model equations, the dynamics of the phytoplankton growth rate obtained from the KDD model reflect the behavior of the lake ecosystem as a whole, and PLI can be considered as a holistic parameter.


Assuntos
Ecossistema , Fitoplâncton , Fitoplâncton/fisiologia , Temperatura , Plâncton/fisiologia , Lagos
3.
Sci Rep ; 12(1): 11979, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831352

RESUMO

The ecosystem of the Naroch Lakes (Belarus) includes three water bodies, Lake Batorino, Lake Myastro and Lake Naroch. These lakes have a common catchment area. At the end of the 80 s, the ecosystem of the Naroch Lakes underwent a transformation, during which the nutrient load on the catchment area decreased, and the concentration of phosphorus as a limiting factor in these water bodies decreased significantly. At the same time, the Naroch Lakes were exposed to zebra mussel (Dreissena polymorpha Pallas) invasion. In the mid-90 s, the biological and hydrochemical characteristics of the ecosystem of the Naroch Lakes stabilized. We show here that complex processes associated with the transformation of the lake ecosystem and affecting both trophic interactions in the Naroch Lakes and the influence of environmental factors on them can be represented using a single parameter, the phase-locking index, PLI. In this case, a statistically significant numerical value of PLI characterizes the phase synchronization of two processes, oscillations of the concentration of total phosphorus, TP, and oscillations of the concentration of chlorophyll, Chl. We show that the phase synchronization of these processes occurs only after the stabilization of the ecosystem of the Naroch Lakes. In the period preceding the transformation of the lake ecosystem, there was no synchronization. Numerical evaluation of PLI as a holistic parameter allows us to characterize the transformation of the lake ecosystem as a whole without resorting to study of complex interactions of various factors involved in this transformation.


Assuntos
Dreissena , Lagos , Animais , Clorofila/análise , Ecossistema , Monitoramento Ambiental , Eutrofização , Lagos/química , Nitrogênio , Fósforo/análise , Água
4.
Sci Data ; 8(1): 200, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349102

RESUMO

Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.

5.
Sci Total Environ ; 788: 147868, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34134389

RESUMO

The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium- and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a 'very high risk' of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate 'rapid' management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Organismos Aquáticos , Mudança Climática , Água Doce
6.
Sci Rep ; 10(1): 20514, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239702

RESUMO

Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970-2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade-1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m-3 decade-1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade-1), but had high variability across lakes, with trends in individual lakes ranging from - 0.68 °C decade-1 to + 0.65 °C decade-1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA