Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioessays ; 46(1): e2300152, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37888800

RESUMO

Mechanisms occurring at the atomic level are now known to drive processes essential for life, as revealed by quantum effects on biochemical reactions. Some macroscopic characteristics of organisms may thus show an atomic imprint, which may be transferred across organisms and affect their evolution. This possibility is considered here for the first time, with the aim of elucidating the appearance of an animal innovation with an unclear evolutionary origin: migratory behaviour. This trait may be mediated by a radical pair (RP) mechanism in the retinal flavoprotein cryptochrome, providing essential magnetic orientation for migration. Isotopes may affect the performance of quantum processes through their nuclear spin. Here, we consider a simple model and then apply the standard open quantum system approach to the spin dynamics of cryptochrome RP. We changed the spin quantum number (I) and g-factor of hydrogen and nitrogen isotopes to investigate their effect on RP's yield and magnetic sensitivity. Strong differences arose between isotopes with I = 1 and I = 1/2 in their contribution to cryptochrome magnetic sensitivity, particularly regarding Earth's magnetic field strengths (25-65 µT). In most cases, isotopic substitution improved RP's magnetic sensitivity. Migratory behaviour may thus have been favoured in animals with certain isotopic compositions of cryptochrome.


Assuntos
Migração Animal , Criptocromos , Animais , Criptocromos/química , Campos Magnéticos , Aves , Isótopos , Biologia
2.
Sci Rep ; 12(1): 16929, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209224

RESUMO

The SARS-CoV-2 pandemic has added new urgency to the study of viral mechanisms of infection. But while vaccines offer a measure of protection against this specific outbreak, a new era of pandemics has been predicted. In addition to this, COVID-19 has drawn attention to post-viral syndromes and the healthcare burden they entail. It seems integral that knowledge of viral mechanisms is increased through as wide a research field as possible. To this end we propose that quantum biology might offer essential new insights into the problem, especially with regards to the important first step of virus-host invasion. Research in quantum biology often centres around energy or charge transfer. While this is predominantly in the context of photosynthesis there has also been some suggestion that cellular receptors such as olfactory or neural receptors might employ vibration assisted electron tunnelling to augment the lock-and-key mechanism. Quantum tunnelling has also been observed in enzyme function. Enzymes are implicated in the invasion of host cells by the SARS-CoV-2 virus. Receptors such as olfactory receptors also appear to be disrupted by COVID-19. Building on these observations we investigate the evidence that quantum tunnelling might be important in the context of infection with SARS-CoV-2. We illustrate this with a simple model relating the vibronic mode of, for example, a viral spike protein to the likelihood of charge transfer in an idealised receptor. Our results show a distinct parameter regime in which the vibronic mode of the spike protein enhances electron transfer. With this in mind, novel therapeutics to prevent SARS-CoV-2 transmission could potentially be identified by their vibrational spectra.


Assuntos
COVID-19 , Receptores Odorantes , Enzima de Conversão de Angiotensina 2 , Humanos , Receptores Virais/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas Virais
3.
J R Soc Interface ; 15(148)2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429265

RESUMO

Biological systems are dynamical, constantly exchanging energy and matter with the environment in order to maintain the non-equilibrium state synonymous with living. Developments in observational techniques have allowed us to study biological dynamics on increasingly small scales. Such studies have revealed evidence of quantum mechanical effects, which cannot be accounted for by classical physics, in a range of biological processes. Quantum biology is the study of such processes, and here we provide an outline of the current state of the field, as well as insights into future directions.


Assuntos
Biofísica/tendências , Biologia de Sistemas/tendências , Teoria Quântica
4.
Sci Rep ; 8(1): 15719, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30356085

RESUMO

The development of the radical pair mechanism has allowed for theoretical explanation of the fact that magnetic fields are observed to have an effect on chemical reactions. The mechanism describes how an external magnetic field can alter chemical yields by interacting with the spin state of a pair of radicals. In the field of quantum biology, there has been some interest in the application of the mechanism to biological systems. This paper takes an open quantum systems approach to a model of the radical pair mechanism in order to derive a master equation in the Born-Markov approximation for the case of two electrons, each interacting with an environment of nuclear spins as well as the external magnetic field, then placed in a dissipative bosonic bath. This model is used to investigate two different cases relating to radical pair dynamics. The first uses a collective coupling approach to simplify calculations for larger numbers of nuclei interacting with the radical pair. The second looks at the effects of different hyperfine configurations of the radical pair model, for instance the case in which one of the electrons interact with two nuclei with different hyperfine coupling constants. The results of these investigations are analysed to see if they offer any insights into the biological application of the radical pair mechanism in avian magnetoreception.


Assuntos
Campos Magnéticos , Teoria Quântica , Animais , Aves , Criptocromos/fisiologia , Elétrons , Resposta Táctica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA