Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 17029, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426604

RESUMO

Mutations in MAPT (microtubule-associated protein tau) cause frontotemporal dementia (FTD). MAPT mutations are associated with abnormal tau phosphorylation levels and accumulation of misfolded tau protein that can propagate between neurons ultimately leading to cell death (tauopathy). Recently, a p.A152T tau variant was identified as a risk factor for FTD, Alzheimer's disease, and synucleinopathies. Here we used induced pluripotent stem cells (iPSC) from a patient carrying this p.A152T variant to create a robust, functional cellular assay system for probing pathophysiological tau accumulation and phosphorylation. Using stably transduced iPSC-derived neural progenitor cells engineered to enable inducible expression of the pro-neural transcription factor Neurogenin 2 (Ngn2), we generated disease-relevant, cortical-like glutamatergic neurons in a scalable, high-throughput screening compatible format. Utilizing automated confocal microscopy, and an advanced image-processing pipeline optimized for analysis of morphologically complex human neuronal cultures, we report quantitative, subcellular localization-specific effects of multiple kinase inhibitors on tau, including ones under clinical investigation not previously reported to affect tau phosphorylation. These results demonstrate the potential for using patient iPSC-derived ex vivo models of tauopathy as genetically accurate, disease-relevant systems to probe tau biochemistry and support the discovery of novel therapeutics for tauopathies.


Assuntos
Glutamatos/metabolismo , Processamento de Imagem Assistida por Computador , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Neurônios/patologia , Proteômica , Tauopatias/patologia , Proteínas tau/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Quinases/metabolismo , Piridinas/química , Piridinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
2.
J Neurosci ; 41(4): 648-662, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33262247

RESUMO

Stress may promote emotional and cognitive disturbances, which differ by sex. Adverse outcomes, including memory disturbances, are typically observed following chronic stress, but are now being recognized also after short events, including mass shootings, assault, or natural disasters, events that consist of concurrent multiple acute stresses (MAS). Prior work has established profound and enduring effects of MAS on memory in males. Here we examined the effects of MAS on female mice and probed the role of hormonal fluctuations during the estrous cycle on MAS-induced memory problems and the underlying brain network and cellular mechanisms. Female mice were impacted by MAS in an estrous cycle-dependent manner: MAS impaired hippocampus-dependent spatial memory in early-proestrous mice, characterized by high levels of estradiol, whereas memory of mice stressed during estrus (low estradiol) was spared. As spatial memory requires an intact dorsal hippocampal CA1, we examined synaptic integrity in mice stressed at different cycle phases and found a congruence of dendritic spine density and spatial memory deficits, with reduced spine density only in mice stressed during high estradiol cycle phases. Assessing MAS-induced activation of brain networks interconnected with hippocampus, we identified differential estrous cycle-dependent activation of memory- and stress-related regions, including the amygdala. Network analyses of the cross-correlation of fos expression among these regions uncovered functional connectivity that differentiated impaired mice from those not impaired by MAS. In conclusion, the estrous cycle modulates the impact of MAS on spatial memory, and fluctuating physiological levels of sex hormones may contribute to this effect.SIGNIFICANCE STATEMENT: Effects of stress on brain functions, including memory, are profound and sex-dependent. Acute stressors occurring simultaneously result in spatial memory impairments in males, but effects on females are unknown. Here we identified estrous cycle-dependent effects of such stresses on memory in females. Surprisingly, females with higher physiological estradiol experienced stress-induced memory impairment and a loss of underlying synapses. Memory- and stress-responsive brain regions interconnected with hippocampus were differentially activated across high and low estradiol mice, and predicted memory impairment. Thus, at functional, network, and cellular levels, physiological estradiol influences the effects of stress on memory in females, providing insight into mechanisms of prominent sex differences in stress-related memory disorders, such as post-traumatic stress disorder.


Assuntos
Estrogênios , Transtornos da Memória/fisiopatologia , Transtornos da Memória/psicologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Animais , Encéfalo/fisiopatologia , Região CA1 Hipocampal/fisiopatologia , Espinhas Dendríticas , Ciclo Estral , Estro , Feminino , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/genética , Memória Espacial , Útero/inervação , Útero/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA