Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 550
Filtrar
1.
J Biol Chem ; : 107736, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39222681

RESUMO

Pyrone-2,4-dicarboxylic acid (PDC) is a valuable polymer precursor that can be derived from the microbial degradation of lignin. The key enzyme in the microbial production of PDC is CHMS dehydrogenase, which acts on the substrate 4-carboxy-2-hydroxymuconate-6-semialdehyde (CHMS). We present the crystal structure of CHMS dehydrogenase (PmdC from Comamonas testosteroni) bound to the cofactor NADP, shedding light on its three-dimensional architecture, and revealing residues responsible for binding NADP. Using a combination of structural homology, molecular docking, and quantum chemistry calculations we have predicted the binding site of CHMS. Key histidine residues in a conserved sequence are identified as crucial for binding the hydroxyl group of CHMS and facilitating dehydrogenation with NADP. Mutating these histidine residues results in a loss of enzyme activity, leading to a proposed model for the enzyme's mechanism. These findings are expected to help guide efforts in protein and metabolic engineering to enhance PDC yields in biological routes to polymer feedstock synthesis.

2.
Microbiol Spectr ; : e0094624, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162555

RESUMO

Conventional Mycoplasma spp. diagnostics involve culture, often considered the gold standard in diagnostic test evaluation. However, culture protocols lack empirical derivation and primarily adhere to National Mastitis Council recommendations, tracing back to initial cultivation of Mycoplasma bovis. Despite a wide range of carbon dioxide (CO2) supplementation reported in literature, specific impacts of CO2 on Mycoplasma spp. growth remain unexplored. Our objective was to assess the effect of CO2 concentration on growth detection rates of 24 Mycoplasma spp. isolates from dairy cows. These isolates, mainly M. bovis, were incubated at 37°C in triplicate and three dilution ranges under three CO2 conditions: ambient air or 5% CO2 or 10% CO2. Bacterial growth was evaluated on incubation days 3, 5, 7, and 10. When cultured using ambient air, log10 cfu/mL was lower on days 3, 5, and 7 of incubation compared with isolates incubated in the recommended 5% or 10% CO2, with less variation observed in ambient air compared with 5% or 10% CO2. However, by 10 days of incubation, no differences in the detection of observable growth were noted among isolates incubated in ambient air, 5% CO2, or 10% CO2. Consequently, Mycoplasma spp. isolated from dairy cattle demonstrated growth after the recommended 7-10 days of culture, even in the absence of supplemental CO2. Given the expected concentration of M. bovis in (sub)clinical samples had similar concentrations to those used in our study, with the majority of isolates being M. bovis, we recommend expanding CO2 concentration ranges in M. bovis culture from 10% CO2 to ambient air when incubating for 10 days. However, the turnaround time could be shortened when incubating with supplemental CO2. IMPORTANCE: Current Mycoplasma spp. culture protocols lack empirical derivation concerning carbon dioxide (CO2) supplementation and are primarily based on the initial cultivation of Mycoplasma bovis. This study indicates that the suitable range for CO2 supplementation is broader than what is currently recommended by the National Mastitis Council for culturing within the specified 7-10 days. No differences in bacterial growth detection rates were observed among ambient air, 5% CO2, or 10% CO2 supplementation during the 7- and 10-day incubation intervals. These new insights provide evidence supporting the possibility of culturing Mycoplasma spp. under ambient air conditions in a laboratory setting.

3.
bioRxiv ; 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39071315

RESUMO

Cryo-EM and X-ray crystallography provide crucial experimental data for obtaining atomic-detail models of biomacromolecules. Refining these models relies on library-based stereochemical restraints, which, in addition to being limited to known chemical entities, do not include meaningful noncovalent interactions relying solely on nonbonded repulsions. Quantum mechanical (QM) calculations could alleviate these issues but are too expensive for large molecules. We present a novel AI-enabled Quantum Refinement (AQuaRef) based on AIMNet2 neural network potential mimicking QM at substantially lower computational costs. By refining 41 cryo-EM and 30 X-ray structures, we show that this approach yields atomic models with superior geometric quality compared to standard techniques, while maintaining an equal or better fit to experimental data.

4.
Acta Crystallogr D Struct Biol ; 80(Pt 8): 639-646, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39052316

RESUMO

Histidine can be protonated on either or both of the two N atoms of the imidazole moiety. Each of the three possible forms occurs as a result of the stereochemical environment of the histidine side chain. In an atomic model, comparing the possible protonation states in situ, looking at possible hydrogen bonding and metal coordination, it is possible to predict which is most likely to be correct. A more direct method is described that uses quantum-mechanical methods to calculate, also in situ, the minimum geometry and energy for comparison, and therefore to more accurately identify the most likely protonation state.


Assuntos
Histidina , Ligação de Hidrogênio , Modelos Moleculares , Prótons , Teoria Quântica , Histidina/química , Imidazóis/química
5.
Acta Crystallogr D Struct Biol ; 80(Pt 8): 588-598, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39058381

RESUMO

The interpretation of cryo-EM maps often includes the docking of known or predicted structures of the components, which is particularly useful when the map resolution is worse than 4 Å. Although it can be effective to search the entire map to find the best placement of a component, the process can be slow when the maps are large. However, frequently there is a well-founded hypothesis about where particular components are located. In such cases, a local search using a map subvolume will be much faster because the search volume is smaller, and more sensitive because optimizing the search volume for the rotation-search step enhances the signal to noise. A Fourier-space likelihood-based local search approach, based on the previously published em_placement software, has been implemented in the new emplace_local program. Tests confirm that the local search approach enhances the speed and sensitivity of the computations. An interactive graphical interface in the ChimeraX molecular-graphics program provides a convenient way to set up and evaluate docking calculations, particularly in defining the part of the map into which the components should be placed.


Assuntos
Microscopia Crioeletrônica , Simulação de Acoplamento Molecular , Software , Microscopia Crioeletrônica/métodos , Simulação de Acoplamento Molecular/métodos , Conformação Proteica
6.
J Biol Chem ; 300(9): 107602, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059496

RESUMO

Glycosylation is a predominant strategy plants use to fine-tune the properties of small molecule metabolites to affect their bioactivity, transport, and storage. It is also important in biotechnology and medicine as many glycosides are utilized in human health. Small molecule glycosylation is largely carried out by family 1 glycosyltransferases. Here, we report a structural and biochemical investigation of UGT95A1, a family 1 GT enzyme from Pilosella officinarum that exhibits a strong, unusual regiospecificity for the 3'-O position of flavonoid acceptor substrate luteolin. We obtained an apo crystal structure to help drive the analyses of a series of binding site mutants, revealing that while most residues are tolerant to mutations, key residues M145 and D464 are important for overall glycosylation activity. Interestingly, E347 is crucial for maintaining the strong preference for 3'-O glycosylation, while R462 can be mutated to increase regioselectivity. The structural determinants of regioselectivity were further confirmed in homologous enzymes. Our study also suggests that the enzyme contains large, highly dynamic, disordered regions. We showed that while most disordered regions of the protein have little to no implication in catalysis, the disordered regions conserved among investigated homologs are important to both the overall efficiency and regiospecificity of the enzyme. This report represents a comprehensive in-depth analysis of a family 1 GT enzyme with a unique substrate regiospecificity and may provide a basis for enzyme functional prediction and engineering.

7.
Pediatr Cardiol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953954

RESUMO

Ductal stenting (DS) is an alternative to the Blalock-Taussig-Thomas Shunt (BTTS) as initial palliation for congenital heart disease with duct-dependent pulmonary blood flow (DDBPF). We sought to analyze the impact of intended single ventricle (SV) and biventricular (BiV) repair pathways on the outcome of DS and BTTS in infants with DDPBF. A single-center, retrospective comparison of infants with DDPBF who underwent either DS (2012-2022) or BTTS procedures (2013-2017). Primary outcomes included all-cause mortality and risk of unplanned re-intervention. Participants were divided into four groups: 1.SV with DS, 2.SV with BTTS, 3.BiV with DS, and 4.BiV with BTTS. Fifty-one DS (SV 45%) and 86 BTTS (SV 49%) procedures were undertaken. For those who had DS, mortality was lower in the BiV compared to SV patients (BiV: 0/28, versus SV: 4/23, p = 0.04). Compared to BiV DS, BiV BTTS had a higher risk of combined death or unplanned re-intervention (HR 4.28; CI 1.25-14.60; p = 0.02). In SV participants, there was no difference for either primary outcome based on procedure type. DS was associated with shorter intensive care length of stay for SV participants (mean difference 5 days, p = 0.01) and shorter intensive care and hospital stay for BiV participants (mean difference 11 days for both outcomes, p = 0.001). There is a survival benefit for DS in BiV participants compared with DS in SV and BTTS in BiV participants. Ductal stenting is associated with a shorter intensive care and hospital length of stay.

8.
Sci Rep ; 14(1): 12903, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839848

RESUMO

Free Fecal Liquid (FFL), also termed Fecal Water Syndrome (FWS), is an ailment in horses characterized by variable solid and liquid (water) phases at defecation. The liquid phase can be excreted before, during, or after the solid defecation phase. While the underlying causes of FFL are unknown, hindgut dysbiosis is suggested to be associated with FFL. Three European studies investigated dysbiosis in horses with FFL using 16S rRNA sequencing and reported results that conflicted between each other. In the present study, we also used 16S rRNA sequencing to study the fecal microbial composition in 14 Canadian horses with FFL, and 11 healthy stable mate controls. We found no significant difference in fecal microbial composition between FFL and healthy horses, which further supports that dysbiosis is not associated with FFL.


Assuntos
Disbiose , Fezes , RNA Ribossômico 16S , Cavalos , Animais , Fezes/microbiologia , RNA Ribossômico 16S/genética , Disbiose/microbiologia , Disbiose/veterinária , Doenças dos Cavalos/microbiologia , Masculino , Canadá , Feminino , Microbioma Gastrointestinal/genética
9.
Metab Eng ; 84: 69-82, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839037

RESUMO

Sunscreen has been used for thousands of years to protect skin from ultraviolet radiation. However, the use of modern commercial sunscreen containing oxybenzone, ZnO, and TiO2 has raised concerns due to their negative effects on human health and the environment. In this study, we aim to establish an efficient microbial platform for production of shinorine, a UV light absorbing compound with anti-aging properties. First, we methodically selected an appropriate host for shinorine production by analyzing central carbon flux distribution data from prior studies alongside predictions from genome-scale metabolic models (GEMs). We enhanced shinorine productivity through CRISPRi-mediated downregulation and utilized shotgun proteomics to pinpoint potential competing pathways. Simultaneously, we improved the shinorine biosynthetic pathway by refining its design, optimizing promoter usage, and altering the strength of ribosome binding sites. Finally, we conducted amino acid feeding experiments under various conditions to identify the key limiting factors in shinorine production. The study combines meta-analysis of 13C-metabolic flux analysis, GEMs, synthetic biology, CRISPRi-mediated gene downregulation, and omics analysis to improve shinorine production, demonstrating the potential of Pseudomonas putida KT2440 as platform for shinorine production.


Assuntos
Engenharia Metabólica , Pseudomonas putida , Protetores Solares , Pseudomonas putida/metabolismo , Pseudomonas putida/genética , Protetores Solares/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-38877837

RESUMO

Enzyme kinetics and inhibition studies are crucial in biochemistry education and research. Conventional methods often require expensive equipment and reagents, potentially limiting their accessibility in limited resource settings. Our approach sought to develop a cost-effective experimental design for studying enzyme kinetics and inhibition. Lactase was chosen as a protein model and its activity was investigated by measuring glucose production from lactose hydrolysis. In the study, commercially available lactase pills were used as an enzyme source, while milk was used as a substrate. Instead of scientific equipment, glucometers were used to measure lactase activity. Enzyme kinetics were evaluated using Michaelis-Menten and Lineweaver-Burk plots. In the study, the effects of temperature, pH, and inhibitors were also investigated. The results of our study aligned with established enzyme kinetics theories and previous studies. Lactase showed temperature and pH-dependent activity, with decreased activity observed at both low and high extremes. Results also showed that galactose acts as a competitive inhibitor of lactase. The approach presented here offers a cost-effective procedure for studying enzyme kinetics and inhibition. It can act as a valuable tool for educational purposes and for preliminary research in settings with limited resources.

11.
Plant Physiol ; 195(4): 2551-2565, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38739546

RESUMO

Rhamnogalacturonan II (RG-II) is a structurally complex and conserved domain of the pectin present in the primary cell walls of vascular plants. Borate cross-linking of RG-II is required for plants to grow and develop normally. Mutations that alter RG-II structure also affect cross-linking and are lethal or severely impair growth. Thus, few genes involved in RG-II synthesis have been identified. Here, we developed a method to generate viable loss-of-function Arabidopsis (Arabidopsis thaliana) mutants in callus tissue via CRISPR/Cas9-mediated gene editing. We combined this with a candidate gene approach to characterize the male gametophyte defective 2 (MGP2) gene that encodes a putative family GT29 glycosyltransferase. Plants homozygous for this mutation do not survive. We showed that in the callus mutant cell walls, RG-II does not cross-link normally because it lacks 3-deoxy-D-manno-octulosonic acid (Kdo) and thus cannot form the α-L-Rhap-(1→5)-α-D-kdop-(1→sidechain). We suggest that MGP2 encodes an inverting RG-II CMP-ß-Kdo transferase (RCKT1). Our discovery provides further insight into the role of sidechains in RG-II dimerization. Our method also provides a viable strategy for further identifying proteins involved in the biosynthesis of RG-II.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Edição de Genes , Glicosiltransferases , Pectinas , Arabidopsis/genética , Arabidopsis/metabolismo , Pectinas/metabolismo , Edição de Genes/métodos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Parede Celular/metabolismo , Parede Celular/genética , Sistemas CRISPR-Cas , Mutação/genética
12.
Protein Sci ; 33(5): e4992, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38647406

RESUMO

Advances in machine learning have enabled sufficiently accurate predictions of protein structure to be used in macromolecular structure determination with crystallography and cryo-electron microscopy data. The Phenix software suite has AlphaFold predictions integrated into an automated pipeline that can start with an amino acid sequence and data, and automatically perform model-building and refinement to return a protein model fitted into the data. Due to the steep technical requirements of running AlphaFold efficiently, we have implemented a Phenix-AlphaFold webservice that enables all Phenix users to run AlphaFold predictions remotely from the Phenix GUI starting with the official 1.21 release. This webservice will be improved based on how it is used by the research community and the future research directions for Phenix.


Assuntos
Modelos Moleculares , Proteínas , Software , Proteínas/química , Conformação Proteica , Dobramento de Proteína , Aprendizado de Máquina , Internet
13.
Biomolecules ; 14(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38540744

RESUMO

Laccases from white-rot fungi catalyze lignin depolymerization, a critical first step to upgrading lignin to valuable biodiesel fuels and chemicals. In this study, a wildtype laccase from the basidiomycete Fomitiporia mediterranea (Fom_lac) and a variant engineered to have a carbohydrate-binding module (Fom_CBM) were studied for their ability to catalyze cleavage of ß-O-4' ether and C-C bonds in phenolic and non-phenolic lignin dimers using a nanostructure-initiator mass spectrometry-based assay. Fom_lac and Fom_CBM catalyze ß-O-4' ether and C-C bond breaking, with higher activity under acidic conditions (pH < 6). The potential of Fom_lac and Fom_CBM to enhance saccharification yields from untreated and ionic liquid pretreated pine was also investigated. Adding Fom_CBM to mixtures of cellulases and hemicellulases improved sugar yields by 140% on untreated pine and 32% on cholinium lysinate pretreated pine when compared to the inclusion of Fom_lac to the same mixtures. Adding either Fom_lac or Fom_CBM to mixtures of cellulases and hemicellulases effectively accelerates enzymatic hydrolysis, demonstrating its potential applications for lignocellulose valorization. We postulate that additional increases in sugar yields for the Fom_CBM enzyme mixtures were due to Fom_CBM being brought more proximal to lignin through binding to either cellulose or lignin itself.


Assuntos
Basidiomycota , Celulases , Lignina/química , Lacase/metabolismo , Basidiomycota/metabolismo , Carboidratos , Açúcares , Éteres
14.
Protein Sci ; 33(3): e4909, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358136

RESUMO

A flat mask-based model is almost universally used in macromolecular crystallography to account for disordered (bulk) solvent. This model assumes any voxel of the crystal unit cell that is not occupied by the atomic model is occupied by the solvent. The properties of this solvent are assumed to be exactly the same across the whole volume of the unit cell. While this is a reasonable approximation in practice, there are a number of scenarios where this model becomes suboptimal. In this work, we enumerate several of these scenarios and describe a new generalized approach to modeling the bulk-solvent which we refer to as mosaic bulk-solvent model. The mosaic bulk-solvent model allows nonuniform features of the solvent in the crystal to be accounted for in a computationally efficient way. It is implemented in the computational crystallography toolbox and the Phenix software.


Assuntos
Software , Solventes/química , Cristalografia por Raios X , Substâncias Macromoleculares/química
15.
Metab Eng ; 82: 157-170, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369052

RESUMO

Sustainable aviation fuel (SAF) will significantly impact global warming in the aviation sector, and important SAF targets are emerging. Isoprenol is a precursor for a promising SAF compound DMCO (1,4-dimethylcyclooctane) and has been produced in several engineered microorganisms. Recently, Pseudomonas putida has gained interest as a future host for isoprenol bioproduction as it can utilize carbon sources from inexpensive plant biomass. Here, we engineer metabolically versatile host P. putida for isoprenol production. We employ two computational modeling approaches (Bilevel optimization and Constrained Minimal Cut Sets) to predict gene knockout targets and optimize the "IPP-bypass" pathway in P. putida to maximize isoprenol production. Altogether, the highest isoprenol production titer from P. putida was achieved at 3.5 g/L under fed-batch conditions. This combination of computational modeling and strain engineering on P. putida for an advanced biofuels production has vital significance in enabling a bioproduction process that can use renewable carbon streams.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Carbono/metabolismo , Engenharia Metabólica
16.
IUCrJ ; 11(Pt 2): 140-151, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358351

RESUMO

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for the deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and the resulting consensus recommendations. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.


Assuntos
Curadoria de Dados , Microscopia Crioeletrônica/métodos
17.
Acta Crystallogr A Found Adv ; 80(Pt 2): 194-201, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334174

RESUMO

The bulk solvent is a major component of biomacromolecular crystals that contributes significantly to the observed diffraction intensities. Accurate modelling of the bulk solvent has been recognized as important for many crystallographic calculations. Owing to its simplicity and modelling power, the flat (mask-based) bulk-solvent model is used by most modern crystallographic software packages to account for disordered solvent. In this model, the bulk-solvent contribution is defined by a binary mask and a scale (scattering) function. The mask is calculated on a regular grid using the atomic model coordinates and their chemical types. The grid step and two radii, solvent and shrinkage, are the three parameters that govern the mask calculation. They are highly correlated and their choice is a compromise between the computer time needed to calculate the mask and the accuracy of the mask. It is demonstrated here that this choice can be optimized using a unique value of 0.6 Šfor the grid step irrespective of the data resolution, and the radii values adjusted correspondingly. The improved values were tested on a large sample of Protein Data Bank entries derived from X-ray diffraction data and are now used in the computational crystallography toolbox (CCTBX) and in Phenix as the default choice.

18.
Nat Microbiol ; 9(2): 490-501, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212658

RESUMO

Community assembly describes how different ecological processes shape microbial community composition and structure. How environmental factors impact community assembly remains elusive. Here we sampled microbial communities and >200 biogeochemical variables in groundwater at the Oak Ridge Field Research Center, a former nuclear waste disposal site, and developed a theoretical framework to conceptualize the relationships between community assembly processes and environmental stresses. We found that stochastic assembly processes were critical (>60% on average) in shaping community structure, but their relative importance decreased as stress increased. Dispersal limitation and 'drift' related to random birth and death had negative correlations with stresses, whereas the selection processes leading to dissimilar communities increased with stresses, primarily related to pH, cobalt and molybdenum. Assembly mechanisms also varied greatly among different phylogenetic groups. Our findings highlight the importance of microbial dispersal limitation and environmental heterogeneity in ecosystem restoration and management.


Assuntos
Água Subterrânea , Microbiota , Filogenia , Processos Estocásticos
20.
Nat Methods ; 21(1): 110-116, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036854

RESUMO

Artificial intelligence-based protein structure prediction methods such as AlphaFold have revolutionized structural biology. The accuracies of these predictions vary, however, and they do not take into account ligands, covalent modifications or other environmental factors. Here, we evaluate how well AlphaFold predictions can be expected to describe the structure of a protein by comparing predictions directly with experimental crystallographic maps. In many cases, AlphaFold predictions matched experimental maps remarkably closely. In other cases, even very high-confidence predictions differed from experimental maps on a global scale through distortion and domain orientation, and on a local scale in backbone and side-chain conformation. We suggest considering AlphaFold predictions as exceptionally useful hypotheses. We further suggest that it is important to consider the confidence in prediction when interpreting AlphaFold predictions and to carry out experimental structure determination to verify structural details, particularly those that involve interactions not included in the prediction.


Assuntos
Inteligência Artificial , Processos Mentais , Cristalografia , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA