Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
Nature ; 630(8016): 475-483, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839958

RESUMO

Senescence is a cellular state linked to ageing and age-onset disease across many mammalian species1,2. Acutely, senescent cells promote wound healing3,4 and prevent tumour formation5; but they are also pro-inflammatory, thus chronically exacerbate tissue decline. Whereas senescent cells are active targets for anti-ageing therapy6-11, why these cells form in vivo, how they affect tissue ageing and the effect of their elimination remain unclear12,13. Here we identify naturally occurring senescent glia in ageing Drosophila brains and decipher their origin and influence. Using Activator protein 1 (AP1) activity to screen for senescence14,15, we determine that senescent glia can appear in response to neuronal mitochondrial dysfunction. In turn, senescent glia promote lipid accumulation in non-senescent glia; similar effects are seen in senescent human fibroblasts in culture. Targeting AP1 activity in senescent glia mitigates senescence biomarkers, extends fly lifespan and health span, and prevents lipid accumulation. However, these benefits come at the cost of increased oxidative damage in the brain, and neuronal mitochondrial function remains poor. Altogether, our results map the trajectory of naturally occurring senescent glia in vivo and indicate that these cells link key ageing phenomena: mitochondrial dysfunction and lipid accumulation.


Assuntos
Envelhecimento , Encéfalo , Senescência Celular , Drosophila melanogaster , Metabolismo dos Lipídeos , Mitocôndrias , Neuroglia , Animais , Feminino , Humanos , Masculino , Envelhecimento/metabolismo , Envelhecimento/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/citologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/citologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Longevidade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo , Fator de Transcrição AP-1/metabolismo , Lipídeos , Inflamação/metabolismo , Inflamação/patologia
2.
Nat Commun ; 15(1): 5410, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926365

RESUMO

METTL3 is the catalytic subunit of the methyltransferase complex, which mediates m6A modification to regulate gene expression. In addition, METTL3 regulates transcription in an enzymatic activity-independent manner by driving changes in high-order chromatin structure. However, how these functions of the methyltransferase complex are coordinated remains unknown. Here we show that the methyltransferase complex coordinates its enzymatic activity-dependent and independent functions to regulate cellular senescence, a state of stable cell growth arrest. Specifically, METTL3-mediated chromatin loops induce Hexokinase 2 expression through the three-dimensional chromatin organization during senescence. Elevated Hexokinase 2 expression subsequently promotes liquid-liquid phase separation, manifesting as stress granule phase separation, by driving metabolic reprogramming. This correlates with an impairment of translation of cell-cycle related mRNAs harboring polymethylated m6A sites. In summary, our results report a coordination of m6A-dependent and -independent function of the methyltransferase complex in regulating senescence through phase separation driven by metabolic reprogramming.


Assuntos
Senescência Celular , Cromatina , Metiltransferases , Grânulos de Estresse , Metiltransferases/metabolismo , Metiltransferases/genética , Cromatina/metabolismo , Humanos , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética , Hexoquinase/metabolismo , Hexoquinase/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Adenosina/metabolismo , Adenosina/análogos & derivados , Células HEK293 , Reprogramação Metabólica , Separação de Fases
3.
Artigo em Inglês | MEDLINE | ID: mdl-38761362

RESUMO

Epigenetic changes have been established to be a hallmark of aging, which implies that aging science requires collaborating with the field of chromatin biology. DNA methylation patterns, changes in relative abundance of histone post-translational modifications, and chromatin remodeling are the central players in modifying chromatin structure. Aging is commonly associated with an overall increase in chromatin instability, loss of homeostasis, and decondensation. However, numerous publications have highlighted that the link between aging and chromatin changes is not nearly as linear as previously expected. This complex interplay of these epigenetic elements during the lifetime of an organism likely contributes to cellular senescence, genomic instability, and disease susceptibility. Yet, the causal links between these phenomena still need to be fully unraveled. In this perspective article, we discuss potential future directions of aging chromatin biology.


Assuntos
Envelhecimento , Cromatina , Epigênese Genética , Neoplasias , Humanos , Envelhecimento/genética , Envelhecimento/fisiologia , Cromatina/genética , Cromatina/metabolismo , Neoplasias/genética , Senescência Celular/genética , Senescência Celular/fisiologia , Instabilidade Genômica/genética , Montagem e Desmontagem da Cromatina/genética , Metilação de DNA , Histonas/metabolismo , Animais , Processamento de Proteína Pós-Traducional
5.
Int J Drug Policy ; 125: 104332, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422916

RESUMO

Gifts are a powerful way to acknowledge and strengthen interpersonal relationships. As with any relational space, gifting plays various roles in forming and maintaining relationships in political contexts, but its contribution to relationship-building has attracted little attention. This paper examines how politicians in Aotearoa New Zealand both engage with gifting and how they navigate the perceptions of others. Four current members of parliament (MPs) and six retired MPs participated in semi-structured interviews with questions on common practices and common understandings about political gifting. Their responses indicate their use of four different processes: formal processes are the guidelines provided by the government on gifting, but when these are insufficient, contextual processes regarding perceptions of the media, constituents or colleagues are used, or, alternatively, MPs rely on personal values or view gifting in terms of transactional processes with both parties receiving benefits. The paper explores perceptions and complexities of a sequence of gifts during events (event gifting). The authors recommend an improved awareness and understanding of the contribution of gifting practices to political relationship building.


Assuntos
Doações , Relações Interpessoais , Humanos , Governo , Nova Zelândia
7.
Nat Aging ; 4(2): 185-197, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267705

RESUMO

Sterile inflammation, also known as 'inflammaging', is a hallmark of tissue aging. Cellular senescence contributes to tissue aging, in part, through the secretion of proinflammatory factors collectively known as the senescence-associated secretory phenotype (SASP). The genetic variability of thioredoxin reductase 1 (TXNRD1) is associated with aging and age-associated phenotypes such as late-life survival, activity of daily living and physical performance in old age. TXNRD1's role in regulating tissue aging has been attributed to its enzymatic role in cellular redox regulation. Here, we show that TXNRD1 drives the SASP and inflammaging through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) innate immune response pathway independently of its enzymatic activity. TXNRD1 localizes to cytoplasmic chromatin fragments and interacts with cGAS in a senescence-status-dependent manner, which is necessary for the SASP. TXNRD1 enhances the enzymatic activity of cGAS. TXNRD1 is required for both the tumor-promoting and immune surveillance functions of senescent cells, which are mediated by the SASP in vivo in mouse models. Treatment of aged mice with a TXNRD1 inhibitor that disrupts its interaction with cGAS, but not with an inhibitor of its enzymatic activity alone, downregulated markers of inflammaging in several tissues. In summary, our results show that TXNRD1 promotes the SASP through the innate immune response, with implications for inflammaging. This suggests that the TXNRD1-cGAS interaction is a relevant target for selectively suppressing inflammaging.


Assuntos
Transdução de Sinais , Tiorredoxina Redutase 1 , Animais , Camundongos , Senescência Celular/genética , Imunidade Inata/genética , Inflamação/genética , Nucleotidiltransferases/genética , Tiorredoxina Redutase 1/metabolismo
9.
Blood ; 143(8): 697-712, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38048593

RESUMO

ABSTRACT: Aberrant expression of stem cell-associated genes is a common feature in acute myeloid leukemia (AML) and is linked to leukemic self-renewal and therapy resistance. Using AF10-rearranged leukemia as a prototypical example of the recurrently activated "stemness" network in AML, we screened for chromatin regulators that sustain its expression. We deployed a CRISPR-Cas9 screen with a bespoke domain-focused library and identified several novel chromatin-modifying complexes as regulators of the TALE domain transcription factor MEIS1, a key leukemia stem cell (LSC)-associated gene. CRISPR droplet sequencing revealed that many of these MEIS1 regulators coordinately controlled the transcription of several AML oncogenes. In particular, we identified a novel role for the Tudor-domain-containing chromatin reader protein SGF29 in the transcription of AML oncogenes. Furthermore, SGF29 deletion impaired leukemogenesis in models representative of multiple AML subtypes in multiple AML subtype models. Our studies reveal a novel role for SGF29 as a nononcogenic dependency in AML and identify the SGF29 Tudor domain as an attractive target for drug discovery.


Assuntos
Proteínas de Homeodomínio , Leucemia Mieloide Aguda , Humanos , Proteínas de Homeodomínio/genética , Cromatina/genética , Fatores de Transcrição/genética , Proteína Meis1/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Carcinogênese
10.
Biochim Biophys Acta Bioenerg ; 1865(1): 149004, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37699505

RESUMO

The plant light-harvesting pigment-protein complex LHCII is the major antenna sub-unit of PSII and is generally (though not universally) accepted to play a role in photoprotective energy dissipation under high light conditions, a process known Non-Photochemical Quenching (NPQ). The underlying mechanisms of energy trapping and dissipation within LHCII are still debated. Various models have been proposed for the underlying molecular detail of NPQ, but they are often based on different interpretations of very similar transient absorption measurements of isolated complexes. Here we present a simulated measurement of the fluorescence decay kinetics of quenched LHCII aggregates to determine whether this relatively simple measurement can discriminate between different potential NPQ mechanisms. We simulate not just the underlying physics (excitation, energy migration, quenching and singlet-singlet annihilation) but also the signal detection and typical experimental data analysis. Comparing this to a selection of published fluorescence decay kinetics we find that: (1) Different proposed quenching mechanisms produce noticeably different fluorescence kinetics even at low (annihilation free) excitation density, though the degree of difference is dependent on pulse width. (2) Measured decay kinetics are consistent with most LHCII trimers becoming relatively slow excitation quenchers. A small sub-population of very fast quenchers produces kinetics which do not resemble any observed measurement. (3) It is necessary to consider at least two distinct quenching mechanisms in order to accurately reproduce experimental kinetics, supporting the idea that NPQ is not a simple binary switch.


Assuntos
Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema II , Fluorescência , Complexo de Proteína do Fotossistema II/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Tilacoides/metabolismo , Física
11.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045344

RESUMO

Genomic instability and inflammation are distinct hallmarks of aging, but the connection between them is poorly understood. Understanding their interrelationship will help unravel new mechanisms and therapeutic targets of aging and age-associated diseases. Here we report a novel mechanism directly linking genomic instability and inflammation in senescent cells, through a mitochondria-regulated molecular circuit that connects the p53 tumor suppressor and cytoplasmic chromatin fragments (CCF), a driver of inflammation through the cGAS-STING pathway. Activation or inactivation of p53 by genetic and pharmacologic approaches showed that p53 suppresses CCF accumulation and the downstream inflammatory senescence-associated secretory phenotype (SASP), independent of its effects on cell cycle arrest. p53 activation suppressed CCF formation by promoting DNA repair, reflected in maintenance of genomic integrity, particularly in subtelomeric regions, as shown by single cell genome resequencing. Activation of p53 by pharmacological inhibition of MDM2 in old mice decreased features of SASP in liver, indicating a senomorphic role in vivo . Remarkably, mitochondria in senescent cells suppressed p53 activity by promoting CCF formation and thereby restricting ATM-dependent nuclear DNA damage signaling. These data provide evidence for a mitochondria-regulated p53-CCF circuit in senescent cells that controls DNA repair, genome integrity and inflammatory SASP, and is a potential target for senomorphic healthy aging interventions.

12.
Res Sq ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37986947

RESUMO

Biomarkers of biological age that predict the risk of disease and expected lifespan better than chronological age are key to efficient and cost-effective healthcare1-3. To advance a personalized approach to healthcare, such biomarkers must reliably and accurately capture individual biology, predict biological age, and provide scalable and cost-effective measurements. We developed a novel approach - image-based chromatin and epigenetic age (ImAge) that captures intrinsic progressions of biological age, which readily emerge as principal changes in the spatial organization of chromatin and epigenetic marks in single nuclei without regression on chronological age. ImAge captured the expected acceleration or deceleration of biological age in mice treated with chemotherapy or following a caloric restriction regimen, respectively. ImAge from chronologically identical mice inversely correlated with their locomotor activity (greater activity for younger ImAge), consistent with the widely accepted role of locomotion as an aging biomarker across species. Finally, we demonstrated that ImAge is reduced following transient expression of OSKM cassette in the liver and skeletal muscles and reveals heterogeneity of in vivo reprogramming. We propose that ImAge represents the first-in-class imaging-based biomarker of aging with single-cell resolution.

13.
Nature ; 622(7983): 627-636, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821702

RESUMO

Senescent cells drive age-related tissue dysfunction partially through the induction of a chronic senescence-associated secretory phenotype (SASP)1. Mitochondria are major regulators of the SASP; however, the underlying mechanisms have not been elucidated2. Mitochondria are often essential for apoptosis, a cell fate distinct from cellular senescence. During apoptosis, widespread mitochondrial outer membrane permeabilization (MOMP) commits a cell to die3. Here we find that MOMP occurring in a subset of mitochondria is a feature of cellular senescence. This process, called minority MOMP (miMOMP), requires BAX and BAK macropores enabling the release of mitochondrial DNA (mtDNA) into the cytosol. Cytosolic mtDNA in turn activates the cGAS-STING pathway, a major regulator of the SASP. We find that inhibition of MOMP in vivo decreases inflammatory markers and improves healthspan in aged mice. Our results reveal that apoptosis and senescence are regulated by similar mitochondria-dependent mechanisms and that sublethal mitochondrial apoptotic stress is a major driver of the SASP. We provide proof-of-concept that inhibition of miMOMP-induced inflammation may be a therapeutic route to improve healthspan.


Assuntos
Apoptose , Senescência Celular , Citosol , DNA Mitocondrial , Mitocôndrias , Animais , Camundongos , Citosol/metabolismo , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria , Estudo de Prova de Conceito , Inflamação/metabolismo , Fenótipo , Longevidade , Envelhecimento Saudável
15.
EMBO Rep ; 24(10): e57927, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37650879

RESUMO

Epigenetic modifications are known to be crucial for hematopoietic stem cell (HSC) differentiation, with the BET family member BRD4 playing a vital role in this as an epigenetic reader. In this issue of EMBO reports, Yang et al (2023) demonstrate that the absence of BRD4 leads to senescence in HSCs and hematopoietic progenitor cells (HPCs), affecting the expression of crucial genes involved in myeloid and erythroid development. These data suggest that BRD4 has a protective role in preserving histone tails, thereby sustaining normal HSC/HPC functions.

16.
J Cell Sci ; 136(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37589340

RESUMO

Autophagy is a recycling mechanism involved in cellular homeostasis with key implications for health and disease. The conjugation of the ATG8 family proteins, which includes LC3B (also known as MAP1LC3B), to autophagosome membranes, constitutes a hallmark of the canonical autophagy process. After ATG8 proteins are conjugated to the autophagosome membranes via lipidation, they orchestrate a plethora of protein-protein interactions that support key steps of the autophagy process. These include binding to cargo receptors to allow cargo recruitment, association with proteins implicated in autophagosome transport and autophagosome-lysosome fusion. How these diverse and critical protein-protein interactions are regulated is still not well understood. Recent reports have highlighted crucial roles for post-translational modifications of ATG8 proteins in the regulation of ATG8 functions and the autophagy process. This Review summarizes the main post-translational regulatory events discovered to date to influence the autophagy process, mostly described in mammalian cells, including ubiquitylation, acetylation, lipidation and phosphorylation, as well as their known contributions to the autophagy process, physiology and disease.


Assuntos
Autofagia , Processamento de Proteína Pós-Traducional , Animais , Família da Proteína 8 Relacionada à Autofagia/genética , Fosforilação , Autofagossomos , Mamíferos
17.
Nat Aging ; 3(7): 776-790, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37400722

RESUMO

Cellular senescence is a well-established driver of aging and age-related diseases. There are many challenges to mapping senescent cells in tissues such as the absence of specific markers and their relatively low abundance and vast heterogeneity. Single-cell technologies have allowed unprecedented characterization of senescence; however, many methodologies fail to provide spatial insights. The spatial component is essential, as senescent cells communicate with neighboring cells, impacting their function and the composition of extracellular space. The Cellular Senescence Network (SenNet), a National Institutes of Health (NIH) Common Fund initiative, aims to map senescent cells across the lifespan of humans and mice. Here, we provide a comprehensive review of the existing and emerging methodologies for spatial imaging and their application toward mapping senescent cells. Moreover, we discuss the limitations and challenges inherent to each technology. We argue that the development of spatially resolved methods is essential toward the goal of attaining an atlas of senescent cells.


Assuntos
Envelhecimento , Senescência Celular , Estados Unidos , Humanos , Animais , Camundongos , Longevidade
18.
bioRxiv ; 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37292952

RESUMO

Gene expression programs are regulated by enhancers which act in a context-specific manner, and can reside at great distances from their target genes. Extensive three-dimensional (3D) genome reorganization occurs in senescence, but how enhancer interactomes are reconfigured during this process is just beginning to be understood. Here we generated high-resolution contact maps of active enhancers and their target genes, assessed chromatin accessibility, and established one-dimensional maps of various histone modifications and transcription factors to comprehensively understand the regulation of enhancer configuration during senescence. Hyper-connected enhancer communities/cliques formed around genes that are highly expressed and within essential gene pathways in each cell state. In addition, motif analysis indicates the involvement of specific transcription factors in hyper-connected regulatory elements in each condition; importantly, MafK, a bZIP family transcription factor, was upregulated in senescence, and reduced expression of MafK ameliorated the senescence phenotypes. Because the accumulation of senescent cells is a key feature of aging, we further investigated enhancer connectomes in the liver of young and aged mice. Hyper-connected enhancer communities were identified during aging, which regulate essential genes that maintain cell differentiation and homeostasis. These findings reveal that hyper-connected enhancer communities correlate with high gene expression in senescence and aging and provide potential hotspots for therapeutic intervention in aging and age-associated diseases.

19.
Int J Drug Policy ; 117: 104056, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37187085

RESUMO

BACKGROUND: Use of the term 'alcohol industry' plays an important role in discussions of alcohol and public health. In this paper, we examine how the term is currently used and explore the merits of alternative conceptualisations. METHODS: We start by examining current ways of referring to 'alcohol industry' in public health and then explore the potential for organisational theory, political science, and sociology to provide alcohol research with more inclusive and nuanced conceptualizations. RESULTS: We identify, and critique, three conceptualisations based on purely economic understandings of industry: literal, market, and supply-chain understandings. We then examine three alternative conceptualizations based on systemic understandings of industry: organizational, social-network, and common-interest understandings. In examining these alternatives, we also identify the extent to which they open up new ways of approaching the levels at which industry influence is understood to operate in alcohol and public health research and policy. CONCLUSIONS: Each of the six understandings of 'industry' can play a role in research but their utility depends on the question being asked and the breadth and depth of the analysis being undertaken. However, for those intending to engage with a broader disciplinary base, approaches grounded in the systemic understandings of 'industry' are better positioned to study the complex nexus of relationships that contribute to alcohol industry influence.


Assuntos
Indústrias , Saúde Pública , Humanos , Política , Etanol , Indústria Alimentícia
20.
Cell Rep ; 42(5): 112436, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37115668

RESUMO

PSGL-1 (P-selectin glycoprotein-1) is a T cell-intrinsic checkpoint regulator of exhaustion with an unknown mechanism of action. Here, we show that PSGL-1 acts upstream of PD-1 and requires co-ligation with the T cell receptor (TCR) to attenuate activation of mouse and human CD8+ T cells and drive terminal T cell exhaustion. PSGL-1 directly restrains TCR signaling via Zap70 and maintains expression of the Zap70 inhibitor Sts-1. PSGL-1 deficiency empowers CD8+ T cells to respond to low-affinity TCR ligands and inhibit growth of PD-1-blockade-resistant melanoma by enabling tumor-infiltrating T cells to sustain an elevated metabolic gene signature supportive of increased glycolysis and glucose uptake to promote effector function. This outcome is coupled to an increased abundance of CD8+ T cell stem cell-like progenitors that maintain effector functions. Additionally, pharmacologic blockade of PSGL-1 curtails T cell exhaustion, indicating that PSGL-1 represents an immunotherapeutic target for PD-1-blockade-resistant tumors.


Assuntos
Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Humanos , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Exaustão das Células T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA